homebrew-core/Formula/prover9.rb

49 lines
1.4 KiB
Ruby
Raw Normal View History

class Prover9 < Formula
desc "Automated theorem prover for first-order and equational logic"
homepage "https://www.cs.unm.edu/~mccune/prover9/"
url "https://www.cs.unm.edu/~mccune/prover9/download/LADR-2009-11A.tar.gz"
version "2009-11A"
sha256 "c32bed5807000c0b7161c276e50d9ca0af0cb248df2c1affb2f6fc02471b51d0"
2019-12-26 01:40:23 +00:00
bottle do
cellar :any_skip_relocation
sha256 "1f637c295f07ddf31eedf6bcc73b957584da4d55cb92c7bfea3264d6c3780d1b" => :catalina
sha256 "5ae1f642fa781841fc843a548b5327cf1dfb8d8c4fbe5ea83ddffef004282d57" => :mojave
sha256 "055cf6646dd19effa87d7b9fa8e820c24710a023bcefc98c35604205530ab2c3" => :high_sierra
end
def install
ENV.deparallelize
system "make", "all"
bin.install "bin/prover9", "bin/mace4"
man1.install Dir["manpages/*.1"]
end
test do
(testpath/"x2.in").write <<~EOS
formulas(sos).
e * x = x.
x' * x = e.
(x * y) * z = x * (y * z).
x * x = e.
end_of_list.
formulas(goals).
x * y = y * x.
end_of_list.
EOS
(testpath/"group2.in").write <<~EOS
assign(iterate_up_to, 12).
set(verbose).
formulas(theory).
all x all y all z ((x * y) * z = x * (y * z)).
exists e ((all x (e * x = x)) &
(all x exists y (y * x = e))).
exists a exists b (a * b != b * a).
end_of_list.
EOS
system bin/"prover9", "-f", testpath/"x2.in"
system bin/"mace4", "-f", testpath/"group2.in"
end
end