class Coq < Formula desc "Proof assistant for higher-order logic" homepage "https://coq.inria.fr/" url "https://github.com/coq/coq/archive/V8.10.1.tar.gz" sha256 "f8eb889c4974b89db1303b22382b2de4116ede1db673afefc67e3abff8955612" head "https://github.com/coq/coq.git" bottle do sha256 "ad44a6694028e971ebe8b203dc5b240353133482d0766666bbaacee8bc2b6b1d" => :catalina sha256 "26ee42e17513ae2e7d5a3fa4ee7185fd2e1c3b3d60eb61ba5b499871542cf715" => :mojave sha256 "4bea2021c232045a6535a33f18f05b1e36533920df3c8245cbfb52d42279c69f" => :high_sierra end depends_on "ocaml-findlib" => :build depends_on "camlp5" depends_on "ocaml" depends_on "ocaml-num" def install system "./configure", "-prefix", prefix, "-mandir", man, "-coqdocdir", "#{pkgshare}/latex", "-coqide", "no", "-with-doc", "no" system "make", "world" ENV.deparallelize { system "make", "install" } end test do (testpath/"testing.v").write <<~EOS Require Coq.omega.Omega. Require Coq.ZArith.ZArith. Inductive nat : Set := | O : nat | S : nat -> nat. Fixpoint add (n m: nat) : nat := match n with | O => m | S n' => S (add n' m) end. Lemma add_O_r : forall (n: nat), add n O = n. Proof. intros n; induction n; simpl; auto; rewrite IHn; auto. Qed. Import Coq.omega.Omega. Import Coq.ZArith.ZArith. Open Scope Z. Lemma add_O_r_Z : forall (n: Z), n + 0 = n. Proof. intros; omega. Qed. EOS system("#{bin}/coqc", "#{testpath}/testing.v") end end