class Libsvm < Formula desc "Library for support vector machines" homepage "https://www.csie.ntu.edu.tw/~cjlin/libsvm/" url "https://www.csie.ntu.edu.tw/~cjlin/libsvm/libsvm-3.20.tar.gz" sha256 "0f122480bef44dec4df6dae056f468c208e4e08c00771ec1b6dae2707fd945be" bottle do cellar :any sha256 "2e5b46978c3d94b6c75fc07648c7c9a45735a304889a490908259c73c93b873b" => :el_capitan sha1 "9a87d885fd4d943448c9107fe572ed0b5687bf5b" => :yosemite sha1 "8fcd71c75841c4def48a4f57312ab5aae4ee628e" => :mavericks sha1 "90e7456fa54524a2a12f563ae3e9bcab57d6ade7" => :mountain_lion end def install system "make", "CFLAGS=#{ENV.cflags}" system "make", "lib" bin.install "svm-scale", "svm-train", "svm-predict" lib.install "libsvm.so.2" => "libsvm.2.dylib" lib.install_symlink "libsvm.2.dylib" => "libsvm.dylib" system "install_name_tool", "-id", "#{lib}/libsvm.2.dylib", "#{lib}/libsvm.2.dylib" include.install "svm.h" end test do (testpath/"train_classification.txt").write <<-EOS.undent +1 201:1.2 3148:1.8 3983:1 4882:1 -1 874:0.3 3652:1.1 3963:1 6179:1 +1 1168:1.2 3318:1.2 3938:1.8 4481:1 +1 350:1 3082:1.5 3965:1 6122:0.2 -1 99:1 3057:1 3957:1 5838:0.3 EOS (testpath/"train_regression.txt").write <<-EOS.undent 0.23 201:1.2 3148:1.8 3983:1 4882:1 0.33 874:0.3 3652:1.1 3963:1 6179:1 -0.12 1168:1.2 3318:1.2 3938:1.8 4481:1 EOS system "#{bin}/svm-train", "-s", "0", "train_classification.txt" system "#{bin}/svm-train", "-s", "3", "train_regression.txt" end end