class Libvmaf < Formula desc "Perceptual video quality assessment based on multi-method fusion" homepage "https://github.com/Netflix/vmaf" url "https://github.com/Netflix/vmaf/archive/v1.3.11.tar.gz" sha256 "cb0dcc2c6c8034808a62e9da07622512d5bfde0fe05073dd04428fe6de2988e9" bottle do cellar :any_skip_relocation sha256 "492a8d4393833fc9984ee8486bdc62484682f1f236a65d6dfb537e8c6d1a00a5" => :mojave sha256 "fdd93654b86a81af47cc943d446ca122b547b33bb7c96f8211803508928f449d" => :high_sierra sha256 "9a2f816b9c15a3825701de6744de8a5ec76370eedcb25d51c125b4f80d888679" => :sierra end def install system "make" system "make", "install", "INSTALL_PREFIX=#{prefix}" system "make", "testlib", "INSTALL_PREFIX=#{prefix}" pkgshare.install "wrapper/testlib" pkgshare.install "python/test/resource/yuv/src01_hrc00_576x324.yuv" end test do yuv = "#{pkgshare}/src01_hrc00_576x324.yuv" pkl = "#{share}/model/vmaf_v0.6.1.pkl" output = shell_output("#{pkgshare}/testlib yuv420p 576 324 #{yuv} #{yuv} #{pkl}") assert_match "VMAF score = ", output end end