class Coq < Formula desc "Proof assistant for higher-order logic" homepage "https://coq.inria.fr/" url "https://github.com/coq/coq/archive/V8.9.1.tar.gz" sha256 "87251327e8a1e25c6b08b5c0ae8e7cdf3a91a5f30832bbe74ccc4f0bde9618ea" head "https://github.com/coq/coq.git" bottle do sha256 "4154be5e0ad0cfd0aedab90e08cd4b10c414463be65a83ebcffa1572ecfdc2f0" => :mojave sha256 "fc27156212ecad4d36cf01e394b767b1d6e94c35618b544a931ecf17ff99e22e" => :high_sierra sha256 "48b6101a91cbefdb0a758e82018ddf404145e8f79f31af31f81512722dee7d36" => :sierra end depends_on "ocaml-findlib" => :build depends_on "camlp5" depends_on "ocaml" depends_on "ocaml-num" def install system "./configure", "-prefix", prefix, "-mandir", man, "-coqdocdir", "#{pkgshare}/latex", "-coqide", "no", "-with-doc", "no" system "make", "world" ENV.deparallelize { system "make", "install" } end test do (testpath/"testing.v").write <<~EOS Require Coq.omega.Omega. Require Coq.ZArith.ZArith. Inductive nat : Set := | O : nat | S : nat -> nat. Fixpoint add (n m: nat) : nat := match n with | O => m | S n' => S (add n' m) end. Lemma add_O_r : forall (n: nat), add n O = n. Proof. intros n; induction n; simpl; auto; rewrite IHn; auto. Qed. Import Coq.omega.Omega. Import Coq.ZArith.ZArith. Open Scope Z. Lemma add_O_r_Z : forall (n: Z), n + 0 = n. Proof. intros; omega. Qed. EOS system("#{bin}/coqc", "#{testpath}/testing.v") end end