class Libvmaf < Formula desc "Perceptual video quality assessment based on multi-method fusion" homepage "https://github.com/Netflix/vmaf" url "https://github.com/Netflix/vmaf/archive/v1.3.9.tar.gz" sha256 "c9e4fc850f66cf959a36c9603cef26c4298eec20d6c26f9482a355c5753c092d" bottle do cellar :any_skip_relocation sha256 "22c854b26878ca4ce557b8c0e97e0ef35b721aeb85420aca7b2ee60683f6ee99" => :mojave sha256 "21616392bea5365658832fbe54a31dd64931222427929df813289d4f523cc882" => :high_sierra sha256 "90409c1f0c72ed32fdf2b1a33c09ee987bd0400c034084f155951ff1336ada83" => :sierra end def install system "make" system "make", "install", "INSTALL_PREFIX=#{prefix}" system "make", "testlib", "INSTALL_PREFIX=#{prefix}" pkgshare.install "wrapper/testlib" pkgshare.install "python/test/resource/yuv/src01_hrc00_576x324.yuv" end test do yuv = "#{pkgshare}/src01_hrc00_576x324.yuv" pkl = "#{share}/model/vmaf_v0.6.1.pkl" output = shell_output("#{pkgshare}/testlib yuv420p 576 324 #{yuv} #{yuv} #{pkl}") assert_match "VMAF score = ", output end end