class Libvmaf < Formula desc "Perceptual video quality assessment based on multi-method fusion" homepage "https://github.com/Netflix/vmaf" url "https://github.com/Netflix/vmaf/archive/v1.3.15.tar.gz" sha256 "43bbb484102c4d976da4a10d896fb9a11838c8aa809e9c017d5b3edb225b528d" bottle do cellar :any_skip_relocation sha256 "1a11bb8c22c5ffbf56f2963c2cfc82dd4ff9615595d5f870dc4f005dbd323e7b" => :mojave sha256 "2480b6f5f5ff58acf9d1c732db8b2a04e408d082a53590bdad15d203e02aa791" => :high_sierra sha256 "c5b2cbf13a844a4591e2f1dbf7d20266715130802ba3b030f45e9471da994e86" => :sierra end def install system "make" system "make", "install", "INSTALL_PREFIX=#{prefix}" system "make", "testlib", "INSTALL_PREFIX=#{prefix}" pkgshare.install "wrapper/testlib" pkgshare.install "python/test/resource/yuv/src01_hrc00_576x324.yuv" end test do yuv = "#{pkgshare}/src01_hrc00_576x324.yuv" pkl = "#{share}/model/vmaf_v0.6.1.pkl" output = shell_output("#{pkgshare}/testlib yuv420p 576 324 #{yuv} #{yuv} #{pkl}") assert_match "VMAF score = ", output end end