class Coq < Formula desc "Proof assistant for higher-order logic" homepage "https://coq.inria.fr/" url "https://github.com/coq/coq/archive/V8.8.2.tar.gz" sha256 "f9f843b21fda18195fbf80c706bce8ac70ccb43cbd82f6916747dc6c22d05044" head "https://github.com/coq/coq.git" bottle do sha256 "45d2d54d36f617c14ba51b947b1b018d53c035d03adfc0025e69972560301136" => :mojave sha256 "07db19453e504dcc0ec4ea96e54c4b7bcbee6fd9126dd2da0c0ad179ede6237e" => :high_sierra sha256 "5598f52047139121c42cea869f01ed54b6f66e787918664f173e36bae5963e43" => :sierra end depends_on "ocaml-findlib" => :build depends_on "camlp5" depends_on "ocaml" depends_on "ocaml-num" def install system "./configure", "-prefix", prefix, "-mandir", man, "-emacslib", elisp, "-coqdocdir", "#{pkgshare}/latex", "-coqide", "no", "-with-doc", "no" system "make", "world" ENV.deparallelize { system "make", "install" } end test do (testpath/"testing.v").write <<~EOS Require Coq.omega.Omega. Require Coq.ZArith.ZArith. Inductive nat : Set := | O : nat | S : nat -> nat. Fixpoint add (n m: nat) : nat := match n with | O => m | S n' => S (add n' m) end. Lemma add_O_r : forall (n: nat), add n O = n. Proof. intros n; induction n; simpl; auto; rewrite IHn; auto. Qed. Import Coq.omega.Omega. Import Coq.ZArith.ZArith. Open Scope Z. Lemma add_O_r_Z : forall (n: Z), n + 0 = n. Proof. intros; omega. Qed. EOS system("#{bin}/coqc", "#{testpath}/testing.v") end end