class Coq < Formula desc "Proof assistant for higher-order logic" homepage "https://coq.inria.fr/" url "https://github.com/coq/coq/archive/V8.10.2.tar.gz" sha256 "693c188f045d21f83114239dbb8af8def01b42a157c7d828087d055c32ec6e86" head "https://github.com/coq/coq.git" bottle do sha256 "a04bc9b5d64756ca8898714e87312888424d37e7835654917f7a3116efa58f88" => :catalina sha256 "7e6b4edd76ced29b4aceaa71409b1d235163f4c54ff1025139baffd11eef28a9" => :mojave sha256 "375a482254e7a357630f1b86da7c456b961619b502407cd03e5c5f60178329ec" => :high_sierra end depends_on "ocaml-findlib" => :build depends_on "camlp5" depends_on "ocaml" depends_on "ocaml-num" def install system "./configure", "-prefix", prefix, "-mandir", man, "-coqdocdir", "#{pkgshare}/latex", "-coqide", "no", "-with-doc", "no" system "make", "world" ENV.deparallelize { system "make", "install" } end test do (testpath/"testing.v").write <<~EOS Require Coq.omega.Omega. Require Coq.ZArith.ZArith. Inductive nat : Set := | O : nat | S : nat -> nat. Fixpoint add (n m: nat) : nat := match n with | O => m | S n' => S (add n' m) end. Lemma add_O_r : forall (n: nat), add n O = n. Proof. intros n; induction n; simpl; auto; rewrite IHn; auto. Qed. Import Coq.omega.Omega. Import Coq.ZArith.ZArith. Open Scope Z. Lemma add_O_r_Z : forall (n: Z), n + 0 = n. Proof. intros; omega. Qed. EOS system("#{bin}/coqc", "#{testpath}/testing.v") end end