homebrew-core/Formula/libsvm.rb
2019-06-30 20:55:13 +02:00

45 lines
1.6 KiB
Ruby

class Libsvm < Formula
desc "Library for support vector machines"
homepage "https://www.csie.ntu.edu.tw/~cjlin/libsvm/"
# Upstream deletes old downloads, so we need to mirror it ourselves
url "https://www.csie.ntu.edu.tw/~cjlin/libsvm/libsvm-3.23.tar.gz"
mirror "https://dl.bintray.com/homebrew/mirror/libsvm-3.23.tar.gz"
sha256 "257aed630dc0a0163e12cb2a80aea9c7dc988e55f28d69c945a38b9433c0ea4a"
bottle do
cellar :any
sha256 "75d440e35a774490aea6cec6fd514779069d3ffa55febce89a3f1eb8bad45337" => :mojave
sha256 "661d867329c2851e84d02e78d2debc78357c9aa0d576223a1011b4d5533a7391" => :high_sierra
sha256 "e78ffd8fb5a4c430e206462619ef419cde99f48728d09baaf250dc1cbc121abc" => :sierra
end
def install
system "make", "CFLAGS=#{ENV.cflags}"
system "make", "lib"
bin.install "svm-scale", "svm-train", "svm-predict"
lib.install "libsvm.so.2" => "libsvm.2.dylib"
lib.install_symlink "libsvm.2.dylib" => "libsvm.dylib"
MachO::Tools.change_dylib_id("#{lib}/libsvm.2.dylib", "#{lib}/libsvm.2.dylib")
include.install "svm.h"
end
test do
(testpath/"train_classification.txt").write <<~EOS
+1 201:1.2 3148:1.8 3983:1 4882:1
-1 874:0.3 3652:1.1 3963:1 6179:1
+1 1168:1.2 3318:1.2 3938:1.8 4481:1
+1 350:1 3082:1.5 3965:1 6122:0.2
-1 99:1 3057:1 3957:1 5838:0.3
EOS
(testpath/"train_regression.txt").write <<~EOS
0.23 201:1.2 3148:1.8 3983:1 4882:1
0.33 874:0.3 3652:1.1 3963:1 6179:1
-0.12 1168:1.2 3318:1.2 3938:1.8 4481:1
EOS
system "#{bin}/svm-train", "-s", "0", "train_classification.txt"
system "#{bin}/svm-train", "-s", "3", "train_regression.txt"
end
end