homebrew-core/Formula/coq.rb
2018-10-31 13:19:30 -04:00

58 lines
1.7 KiB
Ruby

class Coq < Formula
desc "Proof assistant for higher-order logic"
homepage "https://coq.inria.fr/"
url "https://github.com/coq/coq/archive/V8.8.2.tar.gz"
sha256 "f9f843b21fda18195fbf80c706bce8ac70ccb43cbd82f6916747dc6c22d05044"
head "https://github.com/coq/coq.git"
bottle do
sha256 "45d2d54d36f617c14ba51b947b1b018d53c035d03adfc0025e69972560301136" => :mojave
sha256 "07db19453e504dcc0ec4ea96e54c4b7bcbee6fd9126dd2da0c0ad179ede6237e" => :high_sierra
sha256 "5598f52047139121c42cea869f01ed54b6f66e787918664f173e36bae5963e43" => :sierra
end
depends_on "ocaml-findlib" => :build
depends_on "camlp5"
depends_on "ocaml"
depends_on "ocaml-num"
def install
system "./configure", "-prefix", prefix,
"-mandir", man,
"-emacslib", elisp,
"-coqdocdir", "#{pkgshare}/latex",
"-coqide", "no",
"-with-doc", "no"
system "make", "world"
ENV.deparallelize { system "make", "install" }
end
test do
(testpath/"testing.v").write <<~EOS
Require Coq.omega.Omega.
Require Coq.ZArith.ZArith.
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
Fixpoint add (n m: nat) : nat :=
match n with
| O => m
| S n' => S (add n' m)
end.
Lemma add_O_r : forall (n: nat), add n O = n.
Proof.
intros n; induction n; simpl; auto; rewrite IHn; auto.
Qed.
Import Coq.omega.Omega.
Import Coq.ZArith.ZArith.
Open Scope Z.
Lemma add_O_r_Z : forall (n: Z), n + 0 = n.
Proof.
intros; omega.
Qed.
EOS
system("#{bin}/coqc", "#{testpath}/testing.v")
end
end