homebrew-core/Formula/coq.rb
2019-02-10 01:10:37 +01:00

57 lines
1.7 KiB
Ruby

class Coq < Formula
desc "Proof assistant for higher-order logic"
homepage "https://coq.inria.fr/"
url "https://github.com/coq/coq/archive/V8.9.0.tar.gz"
sha256 "8bd6e2bc8d79f96df19b8888ebfbdfdbe50fa9cd3fb969c13b610f7d05070ff0"
head "https://github.com/coq/coq.git"
bottle do
sha256 "0b56d57a006cabfcba72986ee8e4d7154ea8d764bf2ca2921c9ee894e166d033" => :mojave
sha256 "fc3c71b442caa68b3a40a5143ebd272eb93ded575fcee2a72c81ebd791f42906" => :high_sierra
sha256 "8506c6f6304ae35782dda12751c4ff2b22474dbcd6f9e41eb390801314eb6f68" => :sierra
end
depends_on "ocaml-findlib" => :build
depends_on "camlp5"
depends_on "ocaml"
depends_on "ocaml-num"
def install
system "./configure", "-prefix", prefix,
"-mandir", man,
"-coqdocdir", "#{pkgshare}/latex",
"-coqide", "no",
"-with-doc", "no"
system "make", "world"
ENV.deparallelize { system "make", "install" }
end
test do
(testpath/"testing.v").write <<~EOS
Require Coq.omega.Omega.
Require Coq.ZArith.ZArith.
Inductive nat : Set :=
| O : nat
| S : nat -> nat.
Fixpoint add (n m: nat) : nat :=
match n with
| O => m
| S n' => S (add n' m)
end.
Lemma add_O_r : forall (n: nat), add n O = n.
Proof.
intros n; induction n; simpl; auto; rewrite IHn; auto.
Qed.
Import Coq.omega.Omega.
Import Coq.ZArith.ZArith.
Open Scope Z.
Lemma add_O_r_Z : forall (n: Z), n + 0 = n.
Proof.
intros; omega.
Qed.
EOS
system("#{bin}/coqc", "#{testpath}/testing.v")
end
end