2e6b877ba9
* docs: fix typos * typos: fix typos found by `codespell` across the codebase * docs: fix `macOS` spelling * docs: fix `authentification` terminology "Authentification" is not a thing. * docs: fix `localhost` typo in example link * typos: fix in-code typos These are potentially higher risk, but no other mentions of these typos show up in the codebase.
79 lines
3 KiB
Python
79 lines
3 KiB
Python
import shutil
|
||
from dataclasses import dataclass
|
||
from fractions import Fraction
|
||
|
||
import pytest
|
||
|
||
from mealie.services.parser_services import RegisteredParser, get_parser
|
||
from mealie.services.parser_services.crfpp.processor import CRFIngredient, convert_list_to_crf_model
|
||
|
||
|
||
@dataclass
|
||
class TestIngredient:
|
||
input: str
|
||
quantity: float
|
||
unit: str
|
||
food: str
|
||
comments: str
|
||
|
||
|
||
def crf_exists() -> bool:
|
||
|
||
return shutil.which("crf_test") is not None
|
||
|
||
|
||
# TODO - add more robust test cases
|
||
test_ingredients = [
|
||
TestIngredient("½ cup all-purpose flour", 0.5, "cup", "all-purpose flour", ""),
|
||
TestIngredient("1 ½ teaspoons ground black pepper", 1.5, "teaspoon", "black pepper", "ground"),
|
||
TestIngredient("⅔ cup unsweetened flaked coconut", 0.667, "cup", "coconut", "unsweetened flaked"),
|
||
TestIngredient("⅓ cup panko bread crumbs", 0.333, "cup", "panko bread crumbs", ""),
|
||
# Small Fraction Tests - PR #1369
|
||
# Reported error is was for 1/8 - new lowest expected threshold is 1/32
|
||
TestIngredient("1/8 cup all-purpose flour", 0.125, "cup", "all-purpose flour", ""),
|
||
TestIngredient("1/32 cup all-purpose flour", 0.031, "cup", "all-purpose flour", ""),
|
||
]
|
||
|
||
|
||
@pytest.mark.skipif(not crf_exists(), reason="CRF++ not installed")
|
||
def test_nlp_parser():
|
||
models: list[CRFIngredient] = convert_list_to_crf_model([x.input for x in test_ingredients])
|
||
|
||
# Iterate over models and test_ingredients to gather
|
||
for model, test_ingredient in zip(models, test_ingredients):
|
||
assert round(float(sum(Fraction(s) for s in model.qty.split())), 3) == pytest.approx(test_ingredient.quantity)
|
||
|
||
assert model.comment == test_ingredient.comments
|
||
assert model.name == test_ingredient.food
|
||
assert model.unit == test_ingredient.unit
|
||
|
||
|
||
def test_brute_parser():
|
||
# input: (quantity, unit, food, comments)
|
||
expectations = {
|
||
# Dutch
|
||
"1 theelepel koffie": (1, "theelepel", "koffie", ""),
|
||
"3 theelepels koffie": (3, "theelepels", "koffie", ""),
|
||
"1 eetlepel tarwe": (1, "eetlepel", "tarwe", ""),
|
||
"20 eetlepels bloem": (20, "eetlepels", "bloem", ""),
|
||
"1 mespunt kaneel": (1, "mespunt", "kaneel", ""),
|
||
"1 snuf(je) zout": (1, "snuf(je)", "zout", ""),
|
||
"2 tbsp minced cilantro, leaves and stems": (2, "tbsp", "minced cilantro", "leaves and stems"),
|
||
"1 large yellow onion, coarsely chopped": (1, "large", "yellow onion", "coarsely chopped"),
|
||
"1 1/2 tsp garam masala": (1.5, "tsp", "garam masala", ""),
|
||
"2 cups mango chunks, (2 large mangoes) (fresh or frozen)": (
|
||
2,
|
||
"cups",
|
||
"mango chunks, (2 large mangoes)",
|
||
"fresh or frozen",
|
||
),
|
||
}
|
||
parser = get_parser(RegisteredParser.brute)
|
||
|
||
for key, val in expectations.items():
|
||
parsed = parser.parse_one(key)
|
||
|
||
assert parsed.ingredient.quantity == val[0]
|
||
assert parsed.ingredient.unit.name == val[1]
|
||
assert parsed.ingredient.food.name == val[2]
|
||
assert parsed.ingredient.note in {val[3], None}
|