.buildscript | ||
adapters | ||
examples | ||
moshi | ||
.gitignore | ||
.travis.yml | ||
CHANGELOG.md | ||
checkstyle.xml | ||
CONTRIBUTING.md | ||
deploy_javadoc.sh | ||
LICENSE.txt | ||
pom.xml | ||
README.md |
Moshi
Moshi is a modern JSON library for Android and Java. It makes it easy to parse JSON into Java objects:
String json = ...;
Moshi moshi = new Moshi.Builder().build();
JsonAdapter<BlackjackHand> jsonAdapter = moshi.adapter(BlackjackHand.class);
BlackjackHand blackjackHand = jsonAdapter.fromJson(json);
System.out.println(blackjackHand);
And it can just as easily serialize Java objects as JSON:
BlackjackHand blackjackHand = new BlackjackHand(
new Card('6', SPADES),
Arrays.asList(new Card('4', CLUBS), new Card('A', HEARTS)));
Moshi moshi = new Moshi.Builder().build();
JsonAdapter<BlackjackHand> jsonAdapter = moshi.adapter(BlackjackHand.class);
String json = jsonAdapter.toJson(blackjackHand);
System.out.println(json);
Built-in Type Adapters
Moshi has built-in support for reading and writing Java’s core data types:
- Primitives (int, float, char...) and their boxed counterparts (Integer, Float, Character...).
- Arrays, Collections, Lists, Sets, and Maps
- Strings
- Enums
It supports your model classes by writing them out field-by-field. In the example above Moshi uses these classes:
class BlackjackHand {
public final Card hidden_card;
public final List<Card> visible_cards;
...
}
class Card {
public final char rank;
public final Suit suit;
...
}
enum Suit {
CLUBS, DIAMONDS, HEARTS, SPADES;
}
to read and write this JSON:
{
"hidden_card": {
"rank": "6",
"suit": "SPADES"
},
"visible_cards": [
{
"rank": "4",
"suit": "CLUBS"
},
{
"rank": "A",
"suit": "HEARTS"
}
]
}
The Javadoc catalogs the complete Moshi API, which we explore below.
Custom Type Adapters
With Moshi, it’s particularly easy to customize how values are converted to and from JSON. A type
adapter is any class that has methods annotated @ToJson
and @FromJson
.
For example, Moshi’s default encoding of a playing card is verbose: the JSON defines the rank and
suit in separate fields: {"rank":"A","suit":"HEARTS"}
. With a type adapter, we can change the
encoding to something more compact: "4H"
for the four of hearts or "JD"
for the jack of
diamonds:
class CardAdapter {
@ToJson String toJson(Card card) {
return card.rank + card.suit.name().substring(0, 1);
}
@FromJson Card fromJson(String card) {
if (card.length() != 2) throw new JsonDataException("Unknown card: " + card);
char rank = card.charAt(0);
switch (card.charAt(1)) {
case 'C': return new Card(rank, Suit.CLUBS);
case 'D': return new Card(rank, Suit.DIAMONDS);
case 'H': return new Card(rank, Suit.HEARTS);
case 'S': return new Card(rank, Suit.SPADES);
default: throw new JsonDataException("unknown suit: " + card);
}
}
}
Register the type adapter with the Moshi.Builder
and we’re good to go.
Moshi moshi = new Moshi.Builder()
.add(new CardAdapter())
.build();
Voila:
{
"hidden_card": "6S",
"visible_cards": [
"4C",
"AH"
]
}
Another example
Note that the method annotated with @FromJson
does not need to take a String as an argument. Rather it can take
input of any type and Moshi will first parse the JSON to an object of that type and then use the @FromJson
method to produce the desired final value. Conversely, the method annotated with @ToJson
does not have to produce
a String.
Assume, for example, that we have to parse a JSON in which the date and time of an event are represented as two separate strings.
{
"title": "Blackjack tournament",
"begin_date": "20151010",
"begin_time": "17:04"
}
We would like to combine these two fields into one string to facilitate the date parsing at a
later point. Also, we would like to have all variable names in CamelCase. Therefore, the Event
class we
want Moshi to produce like this:
class Event {
String title;
String beginDateAndTime;
}
Instead of manually parsing the JSON line per line (which we could also do) we can have Moshi
do the transformation automatically. We simply define another class EventJson
that directly corresponds to the JSON structure:
class EventJson {
String title;
String begin_date;
String begin_time;
}
And another class with the appropriate @FromJson
and @ToJson
methods that are telling Moshi how to convert
an EventJson
to an Event
and back. Now, whenever we are asking Moshi to parse a JSON to an Event
it will first parse it to an EventJson
as an intermediate step. Conversely, to serialize an Event
Moshi will first
create an EventJson
object and then serialize that object as usual.
class EventJsonAdapter {
@FromJson
Event eventFromJson(EventJson eventJson) {
Event event = new Event();
event.title = eventJson.title;
event.beginDateAndTime = eventJson.begin_date + " " + eventJson.begin_time;
return event;
}
@ToJson
EventJson eventToJson(Event event) {
EventJson json = new EventJson();
json.title = event.title;
json.begin_date = event.beginDateAndTime.substring(0, 8);
json.begin_time = event.beginDateAndTime.substring(9, 14);
return json;
}
}
Again we register the adapter with Moshi.
Moshi moshi = new Moshi.Builder()
.add(new EventJsonAdapter())
.build();
We can now use Moshi to parse the JSON directly to an Event
.
JsonAdapter<Event> jsonAdapter = moshi.adapter(Event.class);
Event event = jsonAdapter.fromJson(json);
Fails Gracefully
Automatic databinding almost feels like magic. But unlike the black magic that typically accompanies reflection, Moshi is designed to help you out when things go wrong.
JsonDataException: Expected one of [CLUBS, DIAMONDS, HEARTS, SPADES] but was ANCHOR at path $.visible_cards[2].suit
at com.squareup.moshi.JsonAdapters$11.fromJson(JsonAdapters.java:188)
at com.squareup.moshi.JsonAdapters$11.fromJson(JsonAdapters.java:180)
...
Moshi always throws a standard java.io.IOException
if there is an error reading the JSON document,
or if it is malformed. It throws a JsonDataException
if the JSON document is well-formed, but
doesn’t match the expected format.
Built on Okio
Moshi uses Okio for simple and powerful I/O. It’s a fine complement to OkHttp, which can share buffer segments for maximum efficiency.
Borrows from Gson
Moshi uses the same streaming and binding mechanisms as Gson. If you’re a Gson user you’ll find Moshi works similarly. If you try Moshi and don’t love it, you can even migrate to Gson without much violence!
But the two libraries have a few important differences:
- Moshi has fewer built-in type adapters. For example, you need to configure your own date
adapter. Most binding libraries will encode whatever you throw at them. Moshi refuses to
serialize platform types (
java.*
,javax.*
, andandroid.*
) without a user-provided type adapter. This is intended to prevent you from accidentally locking yourself to a specific JDK or Android release. - Moshi is less configurable. There’s no field naming strategy, versioning, instance creators,
or long serialization policy. Instead of naming a field
visibleCards
and using a policy class to convert that tovisible_cards
, Moshi wants you to just name the fieldvisible_cards
as it appears in the JSON. - Moshi doesn’t have a
JsonElement
model. Instead it just uses built-in types likeList
andMap
. - No HTML-safe escaping. Gson encodes
=
as\u003d
by default so that it can be safely encoded in HTML without additional escaping. Moshi encodes it naturally (as=
) and assumes that the HTML encoder – if there is one – will do its job.
Download
Download the latest JAR or depend via Maven:
<dependency>
<groupId>com.squareup.moshi</groupId>
<artifactId>moshi</artifactId>
<version>1.0.0</version>
</dependency>
or Gradle:
compile 'com.squareup.moshi:moshi:1.0.0'
Snapshots of the development version are available in Sonatype's snapshots
repository.
License
Copyright 2015 Square, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.