openssl/crypto/ec/asm/ecp_nistz256-sparcv9.pl

3062 lines
76 KiB
Perl
Raw Normal View History

#! /usr/bin/env perl
# Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# ECP_NISTZ256 module for SPARCv9.
#
# February 2015.
#
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
# http://eprint.iacr.org/2013/816. In the process of adaptation
# original .c module was made 32-bit savvy in order to make this
# implementation possible.
#
# with/without -DECP_NISTZ256_ASM
# UltraSPARC III +12-18%
# SPARC T4 +99-550% (+66-150% on 32-bit Solaris)
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. Lower coefficients are for ECDSA sign, server-side
# operation. Keep in mind that +200% means 3x improvement.
$output = pop;
open STDOUT,">$output";
$code.=<<___;
#include "sparc_arch.h"
#define LOCALS (STACK_BIAS+STACK_FRAME)
#ifdef __arch64__
.register %g2,#scratch
.register %g3,#scratch
# define STACK64_FRAME STACK_FRAME
# define LOCALS64 LOCALS
#else
# define STACK64_FRAME (2047+192)
# define LOCALS64 STACK64_FRAME
#endif
.section ".text",#alloc,#execinstr
___
########################################################################
# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
#
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
open TABLE,"<ecp_nistz256_table.c" or
open TABLE,"<${dir}../ecp_nistz256_table.c" or
die "failed to open ecp_nistz256_table.c:",$!;
use integer;
foreach(<TABLE>) {
s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
}
close TABLE;
# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
# 64*16*37-1 is because $#arr returns last valid index or @arr, not
# amount of elements.
die "insane number of elements" if ($#arr != 64*16*37-1);
$code.=<<___;
.globl ecp_nistz256_precomputed
.align 4096
ecp_nistz256_precomputed:
___
########################################################################
# this conversion smashes P256_POINT_AFFINE by individual bytes with
# 64 byte interval, similar to
# 1111222233334444
# 1234123412341234
for(1..37) {
@tbl = splice(@arr,0,64*16);
for($i=0;$i<64;$i++) {
undef @line;
for($j=0;$j<64;$j++) {
push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
}
$code.=".byte\t";
$code.=join(',',map { sprintf "0x%02x",$_} @line);
$code.="\n";
}
}
{{{
my ($rp,$ap,$bp)=map("%i$_",(0..2));
my @acc=map("%l$_",(0..7));
my ($t0,$t1,$t2,$t3,$t4,$t5,$t6,$t7)=(map("%o$_",(0..5)),"%g4","%g5");
my ($bi,$a0,$mask,$carry)=(map("%i$_",(3..5)),"%g1");
my ($rp_real,$ap_real)=("%g2","%g3");
$code.=<<___;
.type ecp_nistz256_precomputed,#object
.size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed
.align 64
.LRR: ! 2^512 mod P precomputed for NIST P256 polynomial
.long 0x00000003, 0x00000000, 0xffffffff, 0xfffffffb
.long 0xfffffffe, 0xffffffff, 0xfffffffd, 0x00000004
.Lone:
.long 1,0,0,0,0,0,0,0
.asciz "ECP_NISTZ256 for SPARCv9, CRYPTOGAMS by <appro\@openssl.org>"
! void ecp_nistz256_to_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]);
.globl ecp_nistz256_to_mont
.align 64
ecp_nistz256_to_mont:
save %sp,-STACK_FRAME,%sp
nop
1: call .+8
add %o7,.LRR-1b,$bp
call __ecp_nistz256_mul_mont
nop
ret
restore
.type ecp_nistz256_to_mont,#function
.size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont
! void ecp_nistz256_from_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8]);
.globl ecp_nistz256_from_mont
.align 32
ecp_nistz256_from_mont:
save %sp,-STACK_FRAME,%sp
nop
1: call .+8
add %o7,.Lone-1b,$bp
call __ecp_nistz256_mul_mont
nop
ret
restore
.type ecp_nistz256_from_mont,#function
.size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont
! void ecp_nistz256_mul_mont(BN_ULONG %i0[8],const BN_ULONG %i1[8],
! const BN_ULONG %i2[8]);
.globl ecp_nistz256_mul_mont
.align 32
ecp_nistz256_mul_mont:
save %sp,-STACK_FRAME,%sp
nop
call __ecp_nistz256_mul_mont
nop
ret
restore
.type ecp_nistz256_mul_mont,#function
.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont
! void ecp_nistz256_sqr_mont(BN_ULONG %i0[8],const BN_ULONG %i2[8]);
.globl ecp_nistz256_sqr_mont
.align 32
ecp_nistz256_sqr_mont:
save %sp,-STACK_FRAME,%sp
mov $ap,$bp
call __ecp_nistz256_mul_mont
nop
ret
restore
.type ecp_nistz256_sqr_mont,#function
.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont
___
########################################################################
# Special thing to keep in mind is that $t0-$t7 hold 64-bit values,
# while all others are meant to keep 32. "Meant to" means that additions
# to @acc[0-7] do "contaminate" upper bits, but they are cleared before
# they can affect outcome (follow 'and' with $mask). Also keep in mind
# that addition with carry is addition with 32-bit carry, even though
# CPU is 64-bit. [Addition with 64-bit carry was introduced in T3, see
# below for VIS3 code paths.]
$code.=<<___;
.align 32
__ecp_nistz256_mul_mont:
ld [$bp+0],$bi ! b[0]
mov -1,$mask
ld [$ap+0],$a0
srl $mask,0,$mask ! 0xffffffff
ld [$ap+4],$t1
ld [$ap+8],$t2
ld [$ap+12],$t3
ld [$ap+16],$t4
ld [$ap+20],$t5
ld [$ap+24],$t6
ld [$ap+28],$t7
mulx $a0,$bi,$t0 ! a[0-7]*b[0], 64-bit results
mulx $t1,$bi,$t1
mulx $t2,$bi,$t2
mulx $t3,$bi,$t3
mulx $t4,$bi,$t4
mulx $t5,$bi,$t5
mulx $t6,$bi,$t6
mulx $t7,$bi,$t7
srlx $t0,32,@acc[1] ! extract high parts
srlx $t1,32,@acc[2]
srlx $t2,32,@acc[3]
srlx $t3,32,@acc[4]
srlx $t4,32,@acc[5]
srlx $t5,32,@acc[6]
srlx $t6,32,@acc[7]
srlx $t7,32,@acc[0] ! "@acc[8]"
mov 0,$carry
___
for($i=1;$i<8;$i++) {
$code.=<<___;
addcc @acc[1],$t1,@acc[1] ! accumulate high parts
ld [$bp+4*$i],$bi ! b[$i]
ld [$ap+4],$t1 ! re-load a[1-7]
addccc @acc[2],$t2,@acc[2]
addccc @acc[3],$t3,@acc[3]
ld [$ap+8],$t2
ld [$ap+12],$t3
addccc @acc[4],$t4,@acc[4]
addccc @acc[5],$t5,@acc[5]
ld [$ap+16],$t4
ld [$ap+20],$t5
addccc @acc[6],$t6,@acc[6]
addccc @acc[7],$t7,@acc[7]
ld [$ap+24],$t6
ld [$ap+28],$t7
addccc @acc[0],$carry,@acc[0] ! "@acc[8]"
addc %g0,%g0,$carry
___
# Reduction iteration is normally performed by accumulating
# result of multiplication of modulus by "magic" digit [and
# omitting least significant word, which is guaranteed to
# be 0], but thanks to special form of modulus and "magic"
# digit being equal to least significant word, it can be
# performed with additions and subtractions alone. Indeed:
#
# ffff.0001.0000.0000.0000.ffff.ffff.ffff
# * abcd
# + xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
#
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
# rewrite above as:
#
# xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.abcd
# + abcd.0000.abcd.0000.0000.abcd.0000.0000.0000
# - abcd.0000.0000.0000.0000.0000.0000.abcd
#
# or marking redundant operations:
#
# xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.----
# + abcd.0000.abcd.0000.0000.abcd.----.----.----
# - abcd.----.----.----.----.----.----.----
$code.=<<___;
! multiplication-less reduction
addcc @acc[3],$t0,@acc[3] ! r[3]+=r[0]
addccc @acc[4],%g0,@acc[4] ! r[4]+=0
and @acc[1],$mask,@acc[1]
and @acc[2],$mask,@acc[2]
addccc @acc[5],%g0,@acc[5] ! r[5]+=0
addccc @acc[6],$t0,@acc[6] ! r[6]+=r[0]
and @acc[3],$mask,@acc[3]
and @acc[4],$mask,@acc[4]
addccc @acc[7],%g0,@acc[7] ! r[7]+=0
addccc @acc[0],$t0,@acc[0] ! r[8]+=r[0] "@acc[8]"
and @acc[5],$mask,@acc[5]
and @acc[6],$mask,@acc[6]
addc $carry,%g0,$carry ! top-most carry
subcc @acc[7],$t0,@acc[7] ! r[7]-=r[0]
subccc @acc[0],%g0,@acc[0] ! r[8]-=0 "@acc[8]"
subc $carry,%g0,$carry ! top-most carry
and @acc[7],$mask,@acc[7]
and @acc[0],$mask,@acc[0] ! "@acc[8]"
___
push(@acc,shift(@acc)); # rotate registers to "omit" acc[0]
$code.=<<___;
mulx $a0,$bi,$t0 ! a[0-7]*b[$i], 64-bit results
mulx $t1,$bi,$t1
mulx $t2,$bi,$t2
mulx $t3,$bi,$t3
mulx $t4,$bi,$t4
mulx $t5,$bi,$t5
mulx $t6,$bi,$t6
mulx $t7,$bi,$t7
add @acc[0],$t0,$t0 ! accumulate low parts, can't overflow
add @acc[1],$t1,$t1
srlx $t0,32,@acc[1] ! extract high parts
add @acc[2],$t2,$t2
srlx $t1,32,@acc[2]
add @acc[3],$t3,$t3
srlx $t2,32,@acc[3]
add @acc[4],$t4,$t4
srlx $t3,32,@acc[4]
add @acc[5],$t5,$t5
srlx $t4,32,@acc[5]
add @acc[6],$t6,$t6
srlx $t5,32,@acc[6]
add @acc[7],$t7,$t7
srlx $t6,32,@acc[7]
srlx $t7,32,@acc[0] ! "@acc[8]"
___
}
$code.=<<___;
addcc @acc[1],$t1,@acc[1] ! accumulate high parts
addccc @acc[2],$t2,@acc[2]
addccc @acc[3],$t3,@acc[3]
addccc @acc[4],$t4,@acc[4]
addccc @acc[5],$t5,@acc[5]
addccc @acc[6],$t6,@acc[6]
addccc @acc[7],$t7,@acc[7]
addccc @acc[0],$carry,@acc[0] ! "@acc[8]"
addc %g0,%g0,$carry
addcc @acc[3],$t0,@acc[3] ! multiplication-less reduction
addccc @acc[4],%g0,@acc[4]
addccc @acc[5],%g0,@acc[5]
addccc @acc[6],$t0,@acc[6]
addccc @acc[7],%g0,@acc[7]
addccc @acc[0],$t0,@acc[0] ! "@acc[8]"
addc $carry,%g0,$carry
subcc @acc[7],$t0,@acc[7]
subccc @acc[0],%g0,@acc[0] ! "@acc[8]"
subc $carry,%g0,$carry ! top-most carry
___
push(@acc,shift(@acc)); # rotate registers to omit acc[0]
$code.=<<___;
! Final step is "if result > mod, subtract mod", but we do it
! "other way around", namely subtract modulus from result
! and if it borrowed, add modulus back.
subcc @acc[0],-1,@acc[0] ! subtract modulus
subccc @acc[1],-1,@acc[1]
subccc @acc[2],-1,@acc[2]
subccc @acc[3],0,@acc[3]
subccc @acc[4],0,@acc[4]
subccc @acc[5],0,@acc[5]
subccc @acc[6],1,@acc[6]
subccc @acc[7],-1,@acc[7]
subc $carry,0,$carry ! broadcast borrow bit
! Note that because mod has special form, i.e. consists of
! 0xffffffff, 1 and 0s, we can conditionally synthesize it by
! using value of broadcasted borrow and the borrow bit itself.
! To minimize dependency chain we first broadcast and then
! extract the bit by negating (follow $bi).
addcc @acc[0],$carry,@acc[0] ! add modulus or zero
addccc @acc[1],$carry,@acc[1]
neg $carry,$bi
st @acc[0],[$rp]
addccc @acc[2],$carry,@acc[2]
st @acc[1],[$rp+4]
addccc @acc[3],0,@acc[3]
st @acc[2],[$rp+8]
addccc @acc[4],0,@acc[4]
st @acc[3],[$rp+12]
addccc @acc[5],0,@acc[5]
st @acc[4],[$rp+16]
addccc @acc[6],$bi,@acc[6]
st @acc[5],[$rp+20]
addc @acc[7],$carry,@acc[7]
st @acc[6],[$rp+24]
retl
st @acc[7],[$rp+28]
.type __ecp_nistz256_mul_mont,#function
.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont
! void ecp_nistz256_add(BN_ULONG %i0[8],const BN_ULONG %i1[8],
! const BN_ULONG %i2[8]);
.globl ecp_nistz256_add
.align 32
ecp_nistz256_add:
save %sp,-STACK_FRAME,%sp
ld [$ap],@acc[0]
ld [$ap+4],@acc[1]
ld [$ap+8],@acc[2]
ld [$ap+12],@acc[3]
ld [$ap+16],@acc[4]
ld [$ap+20],@acc[5]
ld [$ap+24],@acc[6]
call __ecp_nistz256_add
ld [$ap+28],@acc[7]
ret
restore
.type ecp_nistz256_add,#function
.size ecp_nistz256_add,.-ecp_nistz256_add
.align 32
__ecp_nistz256_add:
ld [$bp+0],$t0 ! b[0]
ld [$bp+4],$t1
ld [$bp+8],$t2
ld [$bp+12],$t3
addcc @acc[0],$t0,@acc[0]
ld [$bp+16],$t4
ld [$bp+20],$t5
addccc @acc[1],$t1,@acc[1]
ld [$bp+24],$t6
ld [$bp+28],$t7
addccc @acc[2],$t2,@acc[2]
addccc @acc[3],$t3,@acc[3]
addccc @acc[4],$t4,@acc[4]
addccc @acc[5],$t5,@acc[5]
addccc @acc[6],$t6,@acc[6]
addccc @acc[7],$t7,@acc[7]
addc %g0,%g0,$carry
.Lreduce_by_sub:
! if a+b >= modulus, subtract modulus.
!
! But since comparison implies subtraction, we subtract
! modulus and then add it back if subraction borrowed.
subcc @acc[0],-1,@acc[0]
subccc @acc[1],-1,@acc[1]
subccc @acc[2],-1,@acc[2]
subccc @acc[3], 0,@acc[3]
subccc @acc[4], 0,@acc[4]
subccc @acc[5], 0,@acc[5]
subccc @acc[6], 1,@acc[6]
subccc @acc[7],-1,@acc[7]
subc $carry,0,$carry
! Note that because mod has special form, i.e. consists of
! 0xffffffff, 1 and 0s, we can conditionally synthesize it by
! using value of borrow and its negative.
addcc @acc[0],$carry,@acc[0] ! add synthesized modulus
addccc @acc[1],$carry,@acc[1]
neg $carry,$bi
st @acc[0],[$rp]
addccc @acc[2],$carry,@acc[2]
st @acc[1],[$rp+4]
addccc @acc[3],0,@acc[3]
st @acc[2],[$rp+8]
addccc @acc[4],0,@acc[4]
st @acc[3],[$rp+12]
addccc @acc[5],0,@acc[5]
st @acc[4],[$rp+16]
addccc @acc[6],$bi,@acc[6]
st @acc[5],[$rp+20]
addc @acc[7],$carry,@acc[7]
st @acc[6],[$rp+24]
retl
st @acc[7],[$rp+28]
.type __ecp_nistz256_add,#function
.size __ecp_nistz256_add,.-__ecp_nistz256_add
! void ecp_nistz256_mul_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]);
.globl ecp_nistz256_mul_by_2
.align 32
ecp_nistz256_mul_by_2:
save %sp,-STACK_FRAME,%sp
ld [$ap],@acc[0]
ld [$ap+4],@acc[1]
ld [$ap+8],@acc[2]
ld [$ap+12],@acc[3]
ld [$ap+16],@acc[4]
ld [$ap+20],@acc[5]
ld [$ap+24],@acc[6]
call __ecp_nistz256_mul_by_2
ld [$ap+28],@acc[7]
ret
restore
.type ecp_nistz256_mul_by_2,#function
.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2
.align 32
__ecp_nistz256_mul_by_2:
addcc @acc[0],@acc[0],@acc[0] ! a+a=2*a
addccc @acc[1],@acc[1],@acc[1]
addccc @acc[2],@acc[2],@acc[2]
addccc @acc[3],@acc[3],@acc[3]
addccc @acc[4],@acc[4],@acc[4]
addccc @acc[5],@acc[5],@acc[5]
addccc @acc[6],@acc[6],@acc[6]
addccc @acc[7],@acc[7],@acc[7]
b .Lreduce_by_sub
addc %g0,%g0,$carry
.type __ecp_nistz256_mul_by_2,#function
.size __ecp_nistz256_mul_by_2,.-__ecp_nistz256_mul_by_2
! void ecp_nistz256_mul_by_3(BN_ULONG %i0[8],const BN_ULONG %i1[8]);
.globl ecp_nistz256_mul_by_3
.align 32
ecp_nistz256_mul_by_3:
save %sp,-STACK_FRAME,%sp
ld [$ap],@acc[0]
ld [$ap+4],@acc[1]
ld [$ap+8],@acc[2]
ld [$ap+12],@acc[3]
ld [$ap+16],@acc[4]
ld [$ap+20],@acc[5]
ld [$ap+24],@acc[6]
call __ecp_nistz256_mul_by_3
ld [$ap+28],@acc[7]
ret
restore
.type ecp_nistz256_mul_by_3,#function
.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3
.align 32
__ecp_nistz256_mul_by_3:
addcc @acc[0],@acc[0],$t0 ! a+a=2*a
addccc @acc[1],@acc[1],$t1
addccc @acc[2],@acc[2],$t2
addccc @acc[3],@acc[3],$t3
addccc @acc[4],@acc[4],$t4
addccc @acc[5],@acc[5],$t5
addccc @acc[6],@acc[6],$t6
addccc @acc[7],@acc[7],$t7
addc %g0,%g0,$carry
subcc $t0,-1,$t0 ! .Lreduce_by_sub but without stores
subccc $t1,-1,$t1
subccc $t2,-1,$t2
subccc $t3, 0,$t3
subccc $t4, 0,$t4
subccc $t5, 0,$t5
subccc $t6, 1,$t6
subccc $t7,-1,$t7
subc $carry,0,$carry
addcc $t0,$carry,$t0 ! add synthesized modulus
addccc $t1,$carry,$t1
neg $carry,$bi
addccc $t2,$carry,$t2
addccc $t3,0,$t3
addccc $t4,0,$t4
addccc $t5,0,$t5
addccc $t6,$bi,$t6
addc $t7,$carry,$t7
addcc $t0,@acc[0],@acc[0] ! 2*a+a=3*a
addccc $t1,@acc[1],@acc[1]
addccc $t2,@acc[2],@acc[2]
addccc $t3,@acc[3],@acc[3]
addccc $t4,@acc[4],@acc[4]
addccc $t5,@acc[5],@acc[5]
addccc $t6,@acc[6],@acc[6]
addccc $t7,@acc[7],@acc[7]
b .Lreduce_by_sub
addc %g0,%g0,$carry
.type __ecp_nistz256_mul_by_3,#function
.size __ecp_nistz256_mul_by_3,.-__ecp_nistz256_mul_by_3
! void ecp_nistz256_sub(BN_ULONG %i0[8],const BN_ULONG %i1[8],
! const BN_ULONG %i2[8]);
.globl ecp_nistz256_sub
.align 32
ecp_nistz256_sub:
save %sp,-STACK_FRAME,%sp
ld [$ap],@acc[0]
ld [$ap+4],@acc[1]
ld [$ap+8],@acc[2]
ld [$ap+12],@acc[3]
ld [$ap+16],@acc[4]
ld [$ap+20],@acc[5]
ld [$ap+24],@acc[6]
call __ecp_nistz256_sub_from
ld [$ap+28],@acc[7]
ret
restore
.type ecp_nistz256_sub,#function
.size ecp_nistz256_sub,.-ecp_nistz256_sub
! void ecp_nistz256_neg(BN_ULONG %i0[8],const BN_ULONG %i1[8]);
.globl ecp_nistz256_neg
.align 32
ecp_nistz256_neg:
save %sp,-STACK_FRAME,%sp
mov $ap,$bp
mov 0,@acc[0]
mov 0,@acc[1]
mov 0,@acc[2]
mov 0,@acc[3]
mov 0,@acc[4]
mov 0,@acc[5]
mov 0,@acc[6]
call __ecp_nistz256_sub_from
mov 0,@acc[7]
ret
restore
.type ecp_nistz256_neg,#function
.size ecp_nistz256_neg,.-ecp_nistz256_neg
.align 32
__ecp_nistz256_sub_from:
ld [$bp+0],$t0 ! b[0]
ld [$bp+4],$t1
ld [$bp+8],$t2
ld [$bp+12],$t3
subcc @acc[0],$t0,@acc[0]
ld [$bp+16],$t4
ld [$bp+20],$t5
subccc @acc[1],$t1,@acc[1]
subccc @acc[2],$t2,@acc[2]
ld [$bp+24],$t6
ld [$bp+28],$t7
subccc @acc[3],$t3,@acc[3]
subccc @acc[4],$t4,@acc[4]
subccc @acc[5],$t5,@acc[5]
subccc @acc[6],$t6,@acc[6]
subccc @acc[7],$t7,@acc[7]
subc %g0,%g0,$carry ! broadcast borrow bit
.Lreduce_by_add:
! if a-b borrows, add modulus.
!
! Note that because mod has special form, i.e. consists of
! 0xffffffff, 1 and 0s, we can conditionally synthesize it by
! using value of broadcasted borrow and the borrow bit itself.
! To minimize dependency chain we first broadcast and then
! extract the bit by negating (follow $bi).
addcc @acc[0],$carry,@acc[0] ! add synthesized modulus
addccc @acc[1],$carry,@acc[1]
neg $carry,$bi
st @acc[0],[$rp]
addccc @acc[2],$carry,@acc[2]
st @acc[1],[$rp+4]
addccc @acc[3],0,@acc[3]
st @acc[2],[$rp+8]
addccc @acc[4],0,@acc[4]
st @acc[3],[$rp+12]
addccc @acc[5],0,@acc[5]
st @acc[4],[$rp+16]
addccc @acc[6],$bi,@acc[6]
st @acc[5],[$rp+20]
addc @acc[7],$carry,@acc[7]
st @acc[6],[$rp+24]
retl
st @acc[7],[$rp+28]
.type __ecp_nistz256_sub_from,#function
.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from
.align 32
__ecp_nistz256_sub_morf:
ld [$bp+0],$t0 ! b[0]
ld [$bp+4],$t1
ld [$bp+8],$t2
ld [$bp+12],$t3
subcc $t0,@acc[0],@acc[0]
ld [$bp+16],$t4
ld [$bp+20],$t5
subccc $t1,@acc[1],@acc[1]
subccc $t2,@acc[2],@acc[2]
ld [$bp+24],$t6
ld [$bp+28],$t7
subccc $t3,@acc[3],@acc[3]
subccc $t4,@acc[4],@acc[4]
subccc $t5,@acc[5],@acc[5]
subccc $t6,@acc[6],@acc[6]
subccc $t7,@acc[7],@acc[7]
b .Lreduce_by_add
subc %g0,%g0,$carry ! broadcast borrow bit
.type __ecp_nistz256_sub_morf,#function
.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf
! void ecp_nistz256_div_by_2(BN_ULONG %i0[8],const BN_ULONG %i1[8]);
.globl ecp_nistz256_div_by_2
.align 32
ecp_nistz256_div_by_2:
save %sp,-STACK_FRAME,%sp
ld [$ap],@acc[0]
ld [$ap+4],@acc[1]
ld [$ap+8],@acc[2]
ld [$ap+12],@acc[3]
ld [$ap+16],@acc[4]
ld [$ap+20],@acc[5]
ld [$ap+24],@acc[6]
call __ecp_nistz256_div_by_2
ld [$ap+28],@acc[7]
ret
restore
.type ecp_nistz256_div_by_2,#function
.size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2
.align 32
__ecp_nistz256_div_by_2:
! ret = (a is odd ? a+mod : a) >> 1
and @acc[0],1,$bi
neg $bi,$carry
addcc @acc[0],$carry,@acc[0]
addccc @acc[1],$carry,@acc[1]
addccc @acc[2],$carry,@acc[2]
addccc @acc[3],0,@acc[3]
addccc @acc[4],0,@acc[4]
addccc @acc[5],0,@acc[5]
addccc @acc[6],$bi,@acc[6]
addccc @acc[7],$carry,@acc[7]
addc %g0,%g0,$carry
! ret >>= 1
srl @acc[0],1,@acc[0]
sll @acc[1],31,$t0
srl @acc[1],1,@acc[1]
or @acc[0],$t0,@acc[0]
sll @acc[2],31,$t1
srl @acc[2],1,@acc[2]
or @acc[1],$t1,@acc[1]
sll @acc[3],31,$t2
st @acc[0],[$rp]
srl @acc[3],1,@acc[3]
or @acc[2],$t2,@acc[2]
sll @acc[4],31,$t3
st @acc[1],[$rp+4]
srl @acc[4],1,@acc[4]
or @acc[3],$t3,@acc[3]
sll @acc[5],31,$t4
st @acc[2],[$rp+8]
srl @acc[5],1,@acc[5]
or @acc[4],$t4,@acc[4]
sll @acc[6],31,$t5
st @acc[3],[$rp+12]
srl @acc[6],1,@acc[6]
or @acc[5],$t5,@acc[5]
sll @acc[7],31,$t6
st @acc[4],[$rp+16]
srl @acc[7],1,@acc[7]
or @acc[6],$t6,@acc[6]
sll $carry,31,$t7
st @acc[5],[$rp+20]
or @acc[7],$t7,@acc[7]
st @acc[6],[$rp+24]
retl
st @acc[7],[$rp+28]
.type __ecp_nistz256_div_by_2,#function
.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2
___
########################################################################
# following subroutines are "literal" implementation of those found in
# ecp_nistz256.c
#
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
{
my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3));
# above map() describes stack layout with 4 temporary
# 256-bit vectors on top.
$code.=<<___;
#ifdef __PIC__
SPARC_PIC_THUNK(%g1)
#endif
.globl ecp_nistz256_point_double
.align 32
ecp_nistz256_point_double:
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0]
and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1
cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK)
be ecp_nistz256_point_double_vis3
nop
save %sp,-STACK_FRAME-32*4,%sp
mov $rp,$rp_real
mov $ap,$ap_real
.Lpoint_double_shortcut:
ld [$ap+32],@acc[0]
ld [$ap+32+4],@acc[1]
ld [$ap+32+8],@acc[2]
ld [$ap+32+12],@acc[3]
ld [$ap+32+16],@acc[4]
ld [$ap+32+20],@acc[5]
ld [$ap+32+24],@acc[6]
ld [$ap+32+28],@acc[7]
call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(S, in_y);
add %sp,LOCALS+$S,$rp
add $ap_real,64,$bp
add $ap_real,64,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Zsqr, in_z);
add %sp,LOCALS+$Zsqr,$rp
add $ap_real,0,$bp
call __ecp_nistz256_add ! p256_add(M, Zsqr, in_x);
add %sp,LOCALS+$M,$rp
add %sp,LOCALS+$S,$bp
add %sp,LOCALS+$S,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(S, S);
add %sp,LOCALS+$S,$rp
ld [$ap_real],@acc[0]
add %sp,LOCALS+$Zsqr,$bp
ld [$ap_real+4],@acc[1]
ld [$ap_real+8],@acc[2]
ld [$ap_real+12],@acc[3]
ld [$ap_real+16],@acc[4]
ld [$ap_real+20],@acc[5]
ld [$ap_real+24],@acc[6]
ld [$ap_real+28],@acc[7]
call __ecp_nistz256_sub_from ! p256_sub(Zsqr, in_x, Zsqr);
add %sp,LOCALS+$Zsqr,$rp
add $ap_real,32,$bp
add $ap_real,64,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(tmp0, in_z, in_y);
add %sp,LOCALS+$tmp0,$rp
call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(res_z, tmp0);
add $rp_real,64,$rp
add %sp,LOCALS+$Zsqr,$bp
add %sp,LOCALS+$M,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(M, M, Zsqr);
add %sp,LOCALS+$M,$rp
call __ecp_nistz256_mul_by_3 ! p256_mul_by_3(M, M);
add %sp,LOCALS+$M,$rp
add %sp,LOCALS+$S,$bp
add %sp,LOCALS+$S,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(tmp0, S);
add %sp,LOCALS+$tmp0,$rp
call __ecp_nistz256_div_by_2 ! p256_div_by_2(res_y, tmp0);
add $rp_real,32,$rp
add $ap_real,0,$bp
add %sp,LOCALS+$S,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, in_x);
add %sp,LOCALS+$S,$rp
call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(tmp0, S);
add %sp,LOCALS+$tmp0,$rp
add %sp,LOCALS+$M,$bp
add %sp,LOCALS+$M,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(res_x, M);
add $rp_real,0,$rp
add %sp,LOCALS+$tmp0,$bp
call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, tmp0);
add $rp_real,0,$rp
add %sp,LOCALS+$S,$bp
call __ecp_nistz256_sub_morf ! p256_sub(S, S, res_x);
add %sp,LOCALS+$S,$rp
add %sp,LOCALS+$M,$bp
add %sp,LOCALS+$S,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S, S, M);
add %sp,LOCALS+$S,$rp
add $rp_real,32,$bp
call __ecp_nistz256_sub_from ! p256_sub(res_y, S, res_y);
add $rp_real,32,$rp
ret
restore
.type ecp_nistz256_point_double,#function
.size ecp_nistz256_point_double,.-ecp_nistz256_point_double
___
}
########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT *in2);
{
my ($res_x,$res_y,$res_z,
$H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2)=map(32*$_,(0..11));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
# above map() describes stack layout with 12 temporary
# 256-bit vectors on top. Then we reserve some space for
# !in1infty, !in2infty, result of check for zero and return pointer.
my $bp_real=$rp_real;
$code.=<<___;
.globl ecp_nistz256_point_add
.align 32
ecp_nistz256_point_add:
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0]
and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1
cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK)
be ecp_nistz256_point_add_vis3
nop
save %sp,-STACK_FRAME-32*12-32,%sp
stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp
mov $ap,$ap_real
mov $bp,$bp_real
ld [$bp+64],$t0 ! in2_z
ld [$bp+64+4],$t1
ld [$bp+64+8],$t2
ld [$bp+64+12],$t3
ld [$bp+64+16],$t4
ld [$bp+64+20],$t5
ld [$bp+64+24],$t6
ld [$bp+64+28],$t7
or $t1,$t0,$t0
or $t3,$t2,$t2
or $t5,$t4,$t4
or $t7,$t6,$t6
or $t2,$t0,$t0
or $t6,$t4,$t4
or $t4,$t0,$t0 ! !in2infty
movrnz $t0,-1,$t0
st $t0,[%fp+STACK_BIAS-12]
ld [$ap+64],$t0 ! in1_z
ld [$ap+64+4],$t1
ld [$ap+64+8],$t2
ld [$ap+64+12],$t3
ld [$ap+64+16],$t4
ld [$ap+64+20],$t5
ld [$ap+64+24],$t6
ld [$ap+64+28],$t7
or $t1,$t0,$t0
or $t3,$t2,$t2
or $t5,$t4,$t4
or $t7,$t6,$t6
or $t2,$t0,$t0
or $t6,$t4,$t4
or $t4,$t0,$t0 ! !in1infty
movrnz $t0,-1,$t0
st $t0,[%fp+STACK_BIAS-16]
add $bp_real,64,$bp
add $bp_real,64,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z2sqr, in2_z);
add %sp,LOCALS+$Z2sqr,$rp
add $ap_real,64,$bp
add $ap_real,64,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z);
add %sp,LOCALS+$Z1sqr,$rp
add $bp_real,64,$bp
add %sp,LOCALS+$Z2sqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, Z2sqr, in2_z);
add %sp,LOCALS+$S1,$rp
add $ap_real,64,$bp
add %sp,LOCALS+$Z1sqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z);
add %sp,LOCALS+$S2,$rp
add $ap_real,32,$bp
add %sp,LOCALS+$S1,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S1, S1, in1_y);
add %sp,LOCALS+$S1,$rp
add $bp_real,32,$bp
add %sp,LOCALS+$S2,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y);
add %sp,LOCALS+$S2,$rp
add %sp,LOCALS+$S1,$bp
call __ecp_nistz256_sub_from ! p256_sub(R, S2, S1);
add %sp,LOCALS+$R,$rp
or @acc[1],@acc[0],@acc[0] ! see if result is zero
or @acc[3],@acc[2],@acc[2]
or @acc[5],@acc[4],@acc[4]
or @acc[7],@acc[6],@acc[6]
or @acc[2],@acc[0],@acc[0]
or @acc[6],@acc[4],@acc[4]
or @acc[4],@acc[0],@acc[0]
st @acc[0],[%fp+STACK_BIAS-20]
add $ap_real,0,$bp
add %sp,LOCALS+$Z2sqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(U1, in1_x, Z2sqr);
add %sp,LOCALS+$U1,$rp
add $bp_real,0,$bp
add %sp,LOCALS+$Z1sqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in2_x, Z1sqr);
add %sp,LOCALS+$U2,$rp
add %sp,LOCALS+$U1,$bp
call __ecp_nistz256_sub_from ! p256_sub(H, U2, U1);
add %sp,LOCALS+$H,$rp
or @acc[1],@acc[0],@acc[0] ! see if result is zero
or @acc[3],@acc[2],@acc[2]
or @acc[5],@acc[4],@acc[4]
or @acc[7],@acc[6],@acc[6]
or @acc[2],@acc[0],@acc[0]
or @acc[6],@acc[4],@acc[4]
orcc @acc[4],@acc[0],@acc[0]
bne,pt %icc,.Ladd_proceed ! is_equal(U1,U2)?
nop
ld [%fp+STACK_BIAS-12],$t0
ld [%fp+STACK_BIAS-16],$t1
ld [%fp+STACK_BIAS-20],$t2
andcc $t0,$t1,%g0
be,pt %icc,.Ladd_proceed ! (in1infty || in2infty)?
nop
andcc $t2,$t2,%g0
be,pt %icc,.Ladd_double ! is_equal(S1,S2)?
nop
ldx [%fp+STACK_BIAS-8],$rp
st %g0,[$rp]
st %g0,[$rp+4]
st %g0,[$rp+8]
st %g0,[$rp+12]
st %g0,[$rp+16]
st %g0,[$rp+20]
st %g0,[$rp+24]
st %g0,[$rp+28]
st %g0,[$rp+32]
st %g0,[$rp+32+4]
st %g0,[$rp+32+8]
st %g0,[$rp+32+12]
st %g0,[$rp+32+16]
st %g0,[$rp+32+20]
st %g0,[$rp+32+24]
st %g0,[$rp+32+28]
st %g0,[$rp+64]
st %g0,[$rp+64+4]
st %g0,[$rp+64+8]
st %g0,[$rp+64+12]
st %g0,[$rp+64+16]
st %g0,[$rp+64+20]
st %g0,[$rp+64+24]
st %g0,[$rp+64+28]
b .Ladd_done
nop
.align 16
.Ladd_double:
ldx [%fp+STACK_BIAS-8],$rp_real
mov $ap_real,$ap
b .Lpoint_double_shortcut
add %sp,32*(12-4)+32,%sp ! difference in frame sizes
.align 16
.Ladd_proceed:
add %sp,LOCALS+$R,$bp
add %sp,LOCALS+$R,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R);
add %sp,LOCALS+$Rsqr,$rp
add $ap_real,64,$bp
add %sp,LOCALS+$H,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z);
add %sp,LOCALS+$res_z,$rp
add %sp,LOCALS+$H,$bp
add %sp,LOCALS+$H,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H);
add %sp,LOCALS+$Hsqr,$rp
add $bp_real,64,$bp
add %sp,LOCALS+$res_z,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, res_z, in2_z);
add %sp,LOCALS+$res_z,$rp
add %sp,LOCALS+$H,$bp
add %sp,LOCALS+$Hsqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H);
add %sp,LOCALS+$Hcub,$rp
add %sp,LOCALS+$U1,$bp
add %sp,LOCALS+$Hsqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, U1, Hsqr);
add %sp,LOCALS+$U2,$rp
call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2);
add %sp,LOCALS+$Hsqr,$rp
add %sp,LOCALS+$Rsqr,$bp
call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr);
add %sp,LOCALS+$res_x,$rp
add %sp,LOCALS+$Hcub,$bp
call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub);
add %sp,LOCALS+$res_x,$rp
add %sp,LOCALS+$U2,$bp
call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x);
add %sp,LOCALS+$res_y,$rp
add %sp,LOCALS+$Hcub,$bp
add %sp,LOCALS+$S1,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S1, Hcub);
add %sp,LOCALS+$S2,$rp
add %sp,LOCALS+$R,$bp
add %sp,LOCALS+$res_y,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R);
add %sp,LOCALS+$res_y,$rp
add %sp,LOCALS+$S2,$bp
call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2);
add %sp,LOCALS+$res_y,$rp
ld [%fp+STACK_BIAS-16],$t1 ! !in1infty
ld [%fp+STACK_BIAS-12],$t2 ! !in2infty
ldx [%fp+STACK_BIAS-8],$rp
___
for($i=0;$i<96;$i+=8) { # conditional moves
$code.=<<___;
ld [%sp+LOCALS+$i],@acc[0] ! res
ld [%sp+LOCALS+$i+4],@acc[1]
ld [$bp_real+$i],@acc[2] ! in2
ld [$bp_real+$i+4],@acc[3]
ld [$ap_real+$i],@acc[4] ! in1
ld [$ap_real+$i+4],@acc[5]
movrz $t1,@acc[2],@acc[0]
movrz $t1,@acc[3],@acc[1]
movrz $t2,@acc[4],@acc[0]
movrz $t2,@acc[5],@acc[1]
st @acc[0],[$rp+$i]
st @acc[1],[$rp+$i+4]
___
}
$code.=<<___;
.Ladd_done:
ret
restore
.type ecp_nistz256_point_add,#function
.size ecp_nistz256_point_add,.-ecp_nistz256_point_add
___
}
########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT_AFFINE *in2);
{
my ($res_x,$res_y,$res_z,
$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9));
my $Z1sqr = $S2;
# above map() describes stack layout with 10 temporary
# 256-bit vectors on top. Then we reserve some space for
# !in1infty, !in2infty, result of check for zero and return pointer.
my @ONE_mont=(1,0,0,-1,-1,-1,-2,0);
my $bp_real=$rp_real;
$code.=<<___;
.globl ecp_nistz256_point_add_affine
.align 32
ecp_nistz256_point_add_affine:
SPARC_LOAD_ADDRESS_LEAF(OPENSSL_sparcv9cap_P,%g1,%g5)
ld [%g1],%g1 ! OPENSSL_sparcv9cap_P[0]
and %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK),%g1
cmp %g1,(SPARCV9_VIS3|SPARCV9_64BIT_STACK)
be ecp_nistz256_point_add_affine_vis3
nop
save %sp,-STACK_FRAME-32*10-32,%sp
stx $rp,[%fp+STACK_BIAS-8] ! off-load $rp
mov $ap,$ap_real
mov $bp,$bp_real
ld [$ap+64],$t0 ! in1_z
ld [$ap+64+4],$t1
ld [$ap+64+8],$t2
ld [$ap+64+12],$t3
ld [$ap+64+16],$t4
ld [$ap+64+20],$t5
ld [$ap+64+24],$t6
ld [$ap+64+28],$t7
or $t1,$t0,$t0
or $t3,$t2,$t2
or $t5,$t4,$t4
or $t7,$t6,$t6
or $t2,$t0,$t0
or $t6,$t4,$t4
or $t4,$t0,$t0 ! !in1infty
movrnz $t0,-1,$t0
st $t0,[%fp+STACK_BIAS-16]
ld [$bp],@acc[0] ! in2_x
ld [$bp+4],@acc[1]
ld [$bp+8],@acc[2]
ld [$bp+12],@acc[3]
ld [$bp+16],@acc[4]
ld [$bp+20],@acc[5]
ld [$bp+24],@acc[6]
ld [$bp+28],@acc[7]
ld [$bp+32],$t0 ! in2_y
ld [$bp+32+4],$t1
ld [$bp+32+8],$t2
ld [$bp+32+12],$t3
ld [$bp+32+16],$t4
ld [$bp+32+20],$t5
ld [$bp+32+24],$t6
ld [$bp+32+28],$t7
or @acc[1],@acc[0],@acc[0]
or @acc[3],@acc[2],@acc[2]
or @acc[5],@acc[4],@acc[4]
or @acc[7],@acc[6],@acc[6]
or @acc[2],@acc[0],@acc[0]
or @acc[6],@acc[4],@acc[4]
or @acc[4],@acc[0],@acc[0]
or $t1,$t0,$t0
or $t3,$t2,$t2
or $t5,$t4,$t4
or $t7,$t6,$t6
or $t2,$t0,$t0
or $t6,$t4,$t4
or $t4,$t0,$t0
or @acc[0],$t0,$t0 ! !in2infty
movrnz $t0,-1,$t0
st $t0,[%fp+STACK_BIAS-12]
add $ap_real,64,$bp
add $ap_real,64,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Z1sqr, in1_z);
add %sp,LOCALS+$Z1sqr,$rp
add $bp_real,0,$bp
add %sp,LOCALS+$Z1sqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, Z1sqr, in2_x);
add %sp,LOCALS+$U2,$rp
add $ap_real,0,$bp
call __ecp_nistz256_sub_from ! p256_sub(H, U2, in1_x);
add %sp,LOCALS+$H,$rp
add $ap_real,64,$bp
add %sp,LOCALS+$Z1sqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, Z1sqr, in1_z);
add %sp,LOCALS+$S2,$rp
add $ap_real,64,$bp
add %sp,LOCALS+$H,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(res_z, H, in1_z);
add %sp,LOCALS+$res_z,$rp
add $bp_real,32,$bp
add %sp,LOCALS+$S2,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, S2, in2_y);
add %sp,LOCALS+$S2,$rp
add $ap_real,32,$bp
call __ecp_nistz256_sub_from ! p256_sub(R, S2, in1_y);
add %sp,LOCALS+$R,$rp
add %sp,LOCALS+$H,$bp
add %sp,LOCALS+$H,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Hsqr, H);
add %sp,LOCALS+$Hsqr,$rp
add %sp,LOCALS+$R,$bp
add %sp,LOCALS+$R,$ap
call __ecp_nistz256_mul_mont ! p256_sqr_mont(Rsqr, R);
add %sp,LOCALS+$Rsqr,$rp
add %sp,LOCALS+$H,$bp
add %sp,LOCALS+$Hsqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(Hcub, Hsqr, H);
add %sp,LOCALS+$Hcub,$rp
add $ap_real,0,$bp
add %sp,LOCALS+$Hsqr,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(U2, in1_x, Hsqr);
add %sp,LOCALS+$U2,$rp
call __ecp_nistz256_mul_by_2 ! p256_mul_by_2(Hsqr, U2);
add %sp,LOCALS+$Hsqr,$rp
add %sp,LOCALS+$Rsqr,$bp
call __ecp_nistz256_sub_morf ! p256_sub(res_x, Rsqr, Hsqr);
add %sp,LOCALS+$res_x,$rp
add %sp,LOCALS+$Hcub,$bp
call __ecp_nistz256_sub_from ! p256_sub(res_x, res_x, Hcub);
add %sp,LOCALS+$res_x,$rp
add %sp,LOCALS+$U2,$bp
call __ecp_nistz256_sub_morf ! p256_sub(res_y, U2, res_x);
add %sp,LOCALS+$res_y,$rp
add $ap_real,32,$bp
add %sp,LOCALS+$Hcub,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(S2, in1_y, Hcub);
add %sp,LOCALS+$S2,$rp
add %sp,LOCALS+$R,$bp
add %sp,LOCALS+$res_y,$ap
call __ecp_nistz256_mul_mont ! p256_mul_mont(res_y, res_y, R);
add %sp,LOCALS+$res_y,$rp
add %sp,LOCALS+$S2,$bp
call __ecp_nistz256_sub_from ! p256_sub(res_y, res_y, S2);
add %sp,LOCALS+$res_y,$rp
ld [%fp+STACK_BIAS-16],$t1 ! !in1infty
ld [%fp+STACK_BIAS-12],$t2 ! !in2infty
ldx [%fp+STACK_BIAS-8],$rp
___
for($i=0;$i<64;$i+=8) { # conditional moves
$code.=<<___;
ld [%sp+LOCALS+$i],@acc[0] ! res
ld [%sp+LOCALS+$i+4],@acc[1]
ld [$bp_real+$i],@acc[2] ! in2
ld [$bp_real+$i+4],@acc[3]
ld [$ap_real+$i],@acc[4] ! in1
ld [$ap_real+$i+4],@acc[5]
movrz $t1,@acc[2],@acc[0]
movrz $t1,@acc[3],@acc[1]
movrz $t2,@acc[4],@acc[0]
movrz $t2,@acc[5],@acc[1]
st @acc[0],[$rp+$i]
st @acc[1],[$rp+$i+4]
___
}
for(;$i<96;$i+=8) {
my $j=($i-64)/4;
$code.=<<___;
ld [%sp+LOCALS+$i],@acc[0] ! res
ld [%sp+LOCALS+$i+4],@acc[1]
ld [$ap_real+$i],@acc[4] ! in1
ld [$ap_real+$i+4],@acc[5]
movrz $t1,@ONE_mont[$j],@acc[0]
movrz $t1,@ONE_mont[$j+1],@acc[1]
movrz $t2,@acc[4],@acc[0]
movrz $t2,@acc[5],@acc[1]
st @acc[0],[$rp+$i]
st @acc[1],[$rp+$i+4]
___
}
$code.=<<___;
ret
restore
.type ecp_nistz256_point_add_affine,#function
.size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine
___
} }}}
{{{
my ($out,$inp,$index)=map("%i$_",(0..2));
my $mask="%o0";
$code.=<<___;
! void ecp_nistz256_scatter_w5(void *%i0,const P256_POINT *%i1,
! int %i2);
.globl ecp_nistz256_scatter_w5
.align 32
ecp_nistz256_scatter_w5:
save %sp,-STACK_FRAME,%sp
sll $index,2,$index
add $out,$index,$out
ld [$inp],%l0 ! X
ld [$inp+4],%l1
ld [$inp+8],%l2
ld [$inp+12],%l3
ld [$inp+16],%l4
ld [$inp+20],%l5
ld [$inp+24],%l6
ld [$inp+28],%l7
add $inp,32,$inp
st %l0,[$out+64*0-4]
st %l1,[$out+64*1-4]
st %l2,[$out+64*2-4]
st %l3,[$out+64*3-4]
st %l4,[$out+64*4-4]
st %l5,[$out+64*5-4]
st %l6,[$out+64*6-4]
st %l7,[$out+64*7-4]
add $out,64*8,$out
ld [$inp],%l0 ! Y
ld [$inp+4],%l1
ld [$inp+8],%l2
ld [$inp+12],%l3
ld [$inp+16],%l4
ld [$inp+20],%l5
ld [$inp+24],%l6
ld [$inp+28],%l7
add $inp,32,$inp
st %l0,[$out+64*0-4]
st %l1,[$out+64*1-4]
st %l2,[$out+64*2-4]
st %l3,[$out+64*3-4]
st %l4,[$out+64*4-4]
st %l5,[$out+64*5-4]
st %l6,[$out+64*6-4]
st %l7,[$out+64*7-4]
add $out,64*8,$out
ld [$inp],%l0 ! Z
ld [$inp+4],%l1
ld [$inp+8],%l2
ld [$inp+12],%l3
ld [$inp+16],%l4
ld [$inp+20],%l5
ld [$inp+24],%l6
ld [$inp+28],%l7
st %l0,[$out+64*0-4]
st %l1,[$out+64*1-4]
st %l2,[$out+64*2-4]
st %l3,[$out+64*3-4]
st %l4,[$out+64*4-4]
st %l5,[$out+64*5-4]
st %l6,[$out+64*6-4]
st %l7,[$out+64*7-4]
ret
restore
.type ecp_nistz256_scatter_w5,#function
.size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5
! void ecp_nistz256_gather_w5(P256_POINT *%i0,const void *%i1,
! int %i2);
.globl ecp_nistz256_gather_w5
.align 32
ecp_nistz256_gather_w5:
save %sp,-STACK_FRAME,%sp
neg $index,$mask
srax $mask,63,$mask
add $index,$mask,$index
sll $index,2,$index
add $inp,$index,$inp
ld [$inp+64*0],%l0
ld [$inp+64*1],%l1
ld [$inp+64*2],%l2
ld [$inp+64*3],%l3
ld [$inp+64*4],%l4
ld [$inp+64*5],%l5
ld [$inp+64*6],%l6
ld [$inp+64*7],%l7
add $inp,64*8,$inp
and %l0,$mask,%l0
and %l1,$mask,%l1
st %l0,[$out] ! X
and %l2,$mask,%l2
st %l1,[$out+4]
and %l3,$mask,%l3
st %l2,[$out+8]
and %l4,$mask,%l4
st %l3,[$out+12]
and %l5,$mask,%l5
st %l4,[$out+16]
and %l6,$mask,%l6
st %l5,[$out+20]
and %l7,$mask,%l7
st %l6,[$out+24]
st %l7,[$out+28]
add $out,32,$out
ld [$inp+64*0],%l0
ld [$inp+64*1],%l1
ld [$inp+64*2],%l2
ld [$inp+64*3],%l3
ld [$inp+64*4],%l4
ld [$inp+64*5],%l5
ld [$inp+64*6],%l6
ld [$inp+64*7],%l7
add $inp,64*8,$inp
and %l0,$mask,%l0
and %l1,$mask,%l1
st %l0,[$out] ! Y
and %l2,$mask,%l2
st %l1,[$out+4]
and %l3,$mask,%l3
st %l2,[$out+8]
and %l4,$mask,%l4
st %l3,[$out+12]
and %l5,$mask,%l5
st %l4,[$out+16]
and %l6,$mask,%l6
st %l5,[$out+20]
and %l7,$mask,%l7
st %l6,[$out+24]
st %l7,[$out+28]
add $out,32,$out
ld [$inp+64*0],%l0
ld [$inp+64*1],%l1
ld [$inp+64*2],%l2
ld [$inp+64*3],%l3
ld [$inp+64*4],%l4
ld [$inp+64*5],%l5
ld [$inp+64*6],%l6
ld [$inp+64*7],%l7
and %l0,$mask,%l0
and %l1,$mask,%l1
st %l0,[$out] ! Z
and %l2,$mask,%l2
st %l1,[$out+4]
and %l3,$mask,%l3
st %l2,[$out+8]
and %l4,$mask,%l4
st %l3,[$out+12]
and %l5,$mask,%l5
st %l4,[$out+16]
and %l6,$mask,%l6
st %l5,[$out+20]
and %l7,$mask,%l7
st %l6,[$out+24]
st %l7,[$out+28]
ret
restore
.type ecp_nistz256_gather_w5,#function
.size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5
! void ecp_nistz256_scatter_w7(void *%i0,const P256_POINT_AFFINE *%i1,
! int %i2);
.globl ecp_nistz256_scatter_w7
.align 32
ecp_nistz256_scatter_w7:
save %sp,-STACK_FRAME,%sp
nop
add $out,$index,$out
mov 64/4,$index
.Loop_scatter_w7:
ld [$inp],%l0
add $inp,4,$inp
subcc $index,1,$index
stb %l0,[$out+64*0-1]
srl %l0,8,%l1
stb %l1,[$out+64*1-1]
srl %l0,16,%l2
stb %l2,[$out+64*2-1]
srl %l0,24,%l3
stb %l3,[$out+64*3-1]
bne .Loop_scatter_w7
add $out,64*4,$out
ret
restore
.type ecp_nistz256_scatter_w7,#function
.size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7
! void ecp_nistz256_gather_w7(P256_POINT_AFFINE *%i0,const void *%i1,
! int %i2);
.globl ecp_nistz256_gather_w7
.align 32
ecp_nistz256_gather_w7:
save %sp,-STACK_FRAME,%sp
neg $index,$mask
srax $mask,63,$mask
add $index,$mask,$index
add $inp,$index,$inp
mov 64/4,$index
.Loop_gather_w7:
ldub [$inp+64*0],%l0
prefetch [$inp+3840+64*0],1
subcc $index,1,$index
ldub [$inp+64*1],%l1
prefetch [$inp+3840+64*1],1
ldub [$inp+64*2],%l2
prefetch [$inp+3840+64*2],1
ldub [$inp+64*3],%l3
prefetch [$inp+3840+64*3],1
add $inp,64*4,$inp
sll %l1,8,%l1
sll %l2,16,%l2
or %l0,%l1,%l0
sll %l3,24,%l3
or %l0,%l2,%l0
or %l0,%l3,%l0
and %l0,$mask,%l0
st %l0,[$out]
bne .Loop_gather_w7
add $out,4,$out
ret
restore
.type ecp_nistz256_gather_w7,#function
.size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7
___
}}}
{{{
########################################################################
# Following subroutines are VIS3 counterparts of those above that
# implement ones found in ecp_nistz256.c. Key difference is that they
# use 128-bit muliplication and addition with 64-bit carry, and in order
# to do that they perform conversion from uin32_t[8] to uint64_t[4] upon
# entry and vice versa on return.
#
my ($rp,$ap,$bp)=map("%i$_",(0..2));
my ($t0,$t1,$t2,$t3,$a0,$a1,$a2,$a3)=map("%l$_",(0..7));
my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5)=map("%o$_",(0..5));
my ($bi,$poly1,$poly3,$minus1)=(map("%i$_",(3..5)),"%g1");
my ($rp_real,$ap_real)=("%g2","%g3");
my ($acc6,$acc7)=($bp,$bi); # used in squaring
$code.=<<___;
.align 32
__ecp_nistz256_mul_by_2_vis3:
addcc $acc0,$acc0,$acc0
addxccc $acc1,$acc1,$acc1
addxccc $acc2,$acc2,$acc2
addxccc $acc3,$acc3,$acc3
b .Lreduce_by_sub_vis3
addxc %g0,%g0,$acc4 ! did it carry?
.type __ecp_nistz256_mul_by_2_vis3,#function
.size __ecp_nistz256_mul_by_2_vis3,.-__ecp_nistz256_mul_by_2_vis3
.align 32
__ecp_nistz256_add_vis3:
ldx [$bp+0],$t0
ldx [$bp+8],$t1
ldx [$bp+16],$t2
ldx [$bp+24],$t3
__ecp_nistz256_add_noload_vis3:
addcc $t0,$acc0,$acc0
addxccc $t1,$acc1,$acc1
addxccc $t2,$acc2,$acc2
addxccc $t3,$acc3,$acc3
addxc %g0,%g0,$acc4 ! did it carry?
.Lreduce_by_sub_vis3:
addcc $acc0,1,$t0 ! add -modulus, i.e. subtract
addxccc $acc1,$poly1,$t1
addxccc $acc2,$minus1,$t2
addxccc $acc3,$poly3,$t3
addxc $acc4,$minus1,$acc4
movrz $acc4,$t0,$acc0 ! ret = borrow ? ret : ret-modulus
movrz $acc4,$t1,$acc1
stx $acc0,[$rp]
movrz $acc4,$t2,$acc2
stx $acc1,[$rp+8]
movrz $acc4,$t3,$acc3
stx $acc2,[$rp+16]
retl
stx $acc3,[$rp+24]
.type __ecp_nistz256_add_vis3,#function
.size __ecp_nistz256_add_vis3,.-__ecp_nistz256_add_vis3
! Trouble with subtraction is that there is no subtraction with 64-bit
! borrow, only with 32-bit one. For this reason we "decompose" 64-bit
! $acc0-$acc3 to 32-bit values and pick b[4] in 32-bit pieces. But
! recall that SPARC is big-endian, which is why you'll observe that
! b[4] is accessed as 4-0-12-8-20-16-28-24. And prior reduction we
! "collect" result back to 64-bit $acc0-$acc3.
.align 32
__ecp_nistz256_sub_from_vis3:
ld [$bp+4],$t0
ld [$bp+0],$t1
ld [$bp+12],$t2
ld [$bp+8],$t3
srlx $acc0,32,$acc4
not $poly1,$poly1
srlx $acc1,32,$acc5
subcc $acc0,$t0,$acc0
ld [$bp+20],$t0
subccc $acc4,$t1,$acc4
ld [$bp+16],$t1
subccc $acc1,$t2,$acc1
ld [$bp+28],$t2
and $acc0,$poly1,$acc0
subccc $acc5,$t3,$acc5
ld [$bp+24],$t3
sllx $acc4,32,$acc4
and $acc1,$poly1,$acc1
sllx $acc5,32,$acc5
or $acc0,$acc4,$acc0
srlx $acc2,32,$acc4
or $acc1,$acc5,$acc1
srlx $acc3,32,$acc5
subccc $acc2,$t0,$acc2
subccc $acc4,$t1,$acc4
subccc $acc3,$t2,$acc3
and $acc2,$poly1,$acc2
subccc $acc5,$t3,$acc5
sllx $acc4,32,$acc4
and $acc3,$poly1,$acc3
sllx $acc5,32,$acc5
or $acc2,$acc4,$acc2
subc %g0,%g0,$acc4 ! did it borrow?
b .Lreduce_by_add_vis3
or $acc3,$acc5,$acc3
.type __ecp_nistz256_sub_from_vis3,#function
.size __ecp_nistz256_sub_from_vis3,.-__ecp_nistz256_sub_from_vis3
.align 32
__ecp_nistz256_sub_morf_vis3:
ld [$bp+4],$t0
ld [$bp+0],$t1
ld [$bp+12],$t2
ld [$bp+8],$t3
srlx $acc0,32,$acc4
not $poly1,$poly1
srlx $acc1,32,$acc5
subcc $t0,$acc0,$acc0
ld [$bp+20],$t0
subccc $t1,$acc4,$acc4
ld [$bp+16],$t1
subccc $t2,$acc1,$acc1
ld [$bp+28],$t2
and $acc0,$poly1,$acc0
subccc $t3,$acc5,$acc5
ld [$bp+24],$t3
sllx $acc4,32,$acc4
and $acc1,$poly1,$acc1
sllx $acc5,32,$acc5
or $acc0,$acc4,$acc0
srlx $acc2,32,$acc4
or $acc1,$acc5,$acc1
srlx $acc3,32,$acc5
subccc $t0,$acc2,$acc2
subccc $t1,$acc4,$acc4
subccc $t2,$acc3,$acc3
and $acc2,$poly1,$acc2
subccc $t3,$acc5,$acc5
sllx $acc4,32,$acc4
and $acc3,$poly1,$acc3
sllx $acc5,32,$acc5
or $acc2,$acc4,$acc2
subc %g0,%g0,$acc4 ! did it borrow?
or $acc3,$acc5,$acc3
.Lreduce_by_add_vis3:
addcc $acc0,-1,$t0 ! add modulus
not $poly3,$t3
addxccc $acc1,$poly1,$t1
not $poly1,$poly1 ! restore $poly1
addxccc $acc2,%g0,$t2
addxc $acc3,$t3,$t3
movrnz $acc4,$t0,$acc0 ! if a-b borrowed, ret = ret+mod
movrnz $acc4,$t1,$acc1
stx $acc0,[$rp]
movrnz $acc4,$t2,$acc2
stx $acc1,[$rp+8]
movrnz $acc4,$t3,$acc3
stx $acc2,[$rp+16]
retl
stx $acc3,[$rp+24]
.type __ecp_nistz256_sub_morf_vis3,#function
.size __ecp_nistz256_sub_morf_vis3,.-__ecp_nistz256_sub_morf_vis3
.align 32
__ecp_nistz256_div_by_2_vis3:
! ret = (a is odd ? a+mod : a) >> 1
not $poly1,$t1
not $poly3,$t3
and $acc0,1,$acc5
addcc $acc0,-1,$t0 ! add modulus
addxccc $acc1,$t1,$t1
addxccc $acc2,%g0,$t2
addxccc $acc3,$t3,$t3
addxc %g0,%g0,$acc4 ! carry bit
movrnz $acc5,$t0,$acc0
movrnz $acc5,$t1,$acc1
movrnz $acc5,$t2,$acc2
movrnz $acc5,$t3,$acc3
movrz $acc5,%g0,$acc4
! ret >>= 1
srlx $acc0,1,$acc0
sllx $acc1,63,$t0
srlx $acc1,1,$acc1
or $acc0,$t0,$acc0
sllx $acc2,63,$t1
srlx $acc2,1,$acc2
or $acc1,$t1,$acc1
sllx $acc3,63,$t2
stx $acc0,[$rp]
srlx $acc3,1,$acc3
or $acc2,$t2,$acc2
sllx $acc4,63,$t3 ! don't forget carry bit
stx $acc1,[$rp+8]
or $acc3,$t3,$acc3
stx $acc2,[$rp+16]
retl
stx $acc3,[$rp+24]
.type __ecp_nistz256_div_by_2_vis3,#function
.size __ecp_nistz256_div_by_2_vis3,.-__ecp_nistz256_div_by_2_vis3
! compared to __ecp_nistz256_mul_mont it's almost 4x smaller and
! 4x faster [on T4]...
.align 32
__ecp_nistz256_mul_mont_vis3:
mulx $a0,$bi,$acc0
not $poly3,$poly3 ! 0xFFFFFFFF00000001
umulxhi $a0,$bi,$t0
mulx $a1,$bi,$acc1
umulxhi $a1,$bi,$t1
mulx $a2,$bi,$acc2
umulxhi $a2,$bi,$t2
mulx $a3,$bi,$acc3
umulxhi $a3,$bi,$t3
ldx [$bp+8],$bi ! b[1]
addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication
sllx $acc0,32,$t0
addxccc $acc2,$t1,$acc2
srlx $acc0,32,$t1
addxccc $acc3,$t2,$acc3
addxc %g0,$t3,$acc4
mov 0,$acc5
___
for($i=1;$i<4;$i++) {
# Reduction iteration is normally performed by accumulating
# result of multiplication of modulus by "magic" digit [and
# omitting least significant word, which is guaranteed to
# be 0], but thanks to special form of modulus and "magic"
# digit being equal to least significant word, it can be
# performed with additions and subtractions alone. Indeed:
#
# ffff0001.00000000.0000ffff.ffffffff
# * abcdefgh
# + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
#
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
# rewrite above as:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
# + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000
# - 0000abcd.efgh0000.00000000.00000000.abcdefgh
#
# or marking redundant operations:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.--------
# + abcdefgh.abcdefgh.0000abcd.efgh0000.--------
# - 0000abcd.efgh0000.--------.--------.--------
# ^^^^^^^^ but this word is calculated with umulxhi, because
# there is no subtract with 64-bit borrow:-(
$code.=<<___;
sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part
umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part
addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0]
mulx $a0,$bi,$t0
addxccc $acc2,$t1,$acc1
mulx $a1,$bi,$t1
addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001
mulx $a2,$bi,$t2
addxccc $acc4,$t3,$acc3
mulx $a3,$bi,$t3
addxc $acc5,%g0,$acc4
addcc $acc0,$t0,$acc0 ! accumulate low parts of multiplication
umulxhi $a0,$bi,$t0
addxccc $acc1,$t1,$acc1
umulxhi $a1,$bi,$t1
addxccc $acc2,$t2,$acc2
umulxhi $a2,$bi,$t2
addxccc $acc3,$t3,$acc3
umulxhi $a3,$bi,$t3
addxc $acc4,%g0,$acc4
___
$code.=<<___ if ($i<3);
ldx [$bp+8*($i+1)],$bi ! bp[$i+1]
___
$code.=<<___;
addcc $acc1,$t0,$acc1 ! accumulate high parts of multiplication
sllx $acc0,32,$t0
addxccc $acc2,$t1,$acc2
srlx $acc0,32,$t1
addxccc $acc3,$t2,$acc3
addxccc $acc4,$t3,$acc4
addxc %g0,%g0,$acc5
___
}
$code.=<<___;
sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part
umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part
addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0]
addxccc $acc2,$t1,$acc1
addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001
addxccc $acc4,$t3,$acc3
b .Lmul_final_vis3 ! see below
addxc $acc5,%g0,$acc4
.type __ecp_nistz256_mul_mont_vis3,#function
.size __ecp_nistz256_mul_mont_vis3,.-__ecp_nistz256_mul_mont_vis3
! compared to above __ecp_nistz256_mul_mont_vis3 it's 21% less
! instructions, but only 14% faster [on T4]...
.align 32
__ecp_nistz256_sqr_mont_vis3:
! | | | | | |a1*a0| |
! | | | | |a2*a0| | |
! | |a3*a2|a3*a0| | | |
! | | | |a2*a1| | | |
! | | |a3*a1| | | | |
! *| | | | | | | | 2|
! +|a3*a3|a2*a2|a1*a1|a0*a0|
! |--+--+--+--+--+--+--+--|
! |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx
!
! "can't overflow" below mark carrying into high part of
! multiplication result, which can't overflow, because it
! can never be all ones.
mulx $a1,$a0,$acc1 ! a[1]*a[0]
umulxhi $a1,$a0,$t1
mulx $a2,$a0,$acc2 ! a[2]*a[0]
umulxhi $a2,$a0,$t2
mulx $a3,$a0,$acc3 ! a[3]*a[0]
umulxhi $a3,$a0,$acc4
addcc $acc2,$t1,$acc2 ! accumulate high parts of multiplication
mulx $a2,$a1,$t0 ! a[2]*a[1]
umulxhi $a2,$a1,$t1
addxccc $acc3,$t2,$acc3
mulx $a3,$a1,$t2 ! a[3]*a[1]
umulxhi $a3,$a1,$t3
addxc $acc4,%g0,$acc4 ! can't overflow
mulx $a3,$a2,$acc5 ! a[3]*a[2]
not $poly3,$poly3 ! 0xFFFFFFFF00000001
umulxhi $a3,$a2,$acc6
addcc $t2,$t1,$t1 ! accumulate high parts of multiplication
mulx $a0,$a0,$acc0 ! a[0]*a[0]
addxc $t3,%g0,$t2 ! can't overflow
addcc $acc3,$t0,$acc3 ! accumulate low parts of multiplication
umulxhi $a0,$a0,$a0
addxccc $acc4,$t1,$acc4
mulx $a1,$a1,$t1 ! a[1]*a[1]
addxccc $acc5,$t2,$acc5
umulxhi $a1,$a1,$a1
addxc $acc6,%g0,$acc6 ! can't overflow
addcc $acc1,$acc1,$acc1 ! acc[1-6]*=2
mulx $a2,$a2,$t2 ! a[2]*a[2]
addxccc $acc2,$acc2,$acc2
umulxhi $a2,$a2,$a2
addxccc $acc3,$acc3,$acc3
mulx $a3,$a3,$t3 ! a[3]*a[3]
addxccc $acc4,$acc4,$acc4
umulxhi $a3,$a3,$a3
addxccc $acc5,$acc5,$acc5
addxccc $acc6,$acc6,$acc6
addxc %g0,%g0,$acc7
addcc $acc1,$a0,$acc1 ! +a[i]*a[i]
addxccc $acc2,$t1,$acc2
addxccc $acc3,$a1,$acc3
addxccc $acc4,$t2,$acc4
sllx $acc0,32,$t0
addxccc $acc5,$a2,$acc5
srlx $acc0,32,$t1
addxccc $acc6,$t3,$acc6
sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part
addxc $acc7,$a3,$acc7
___
for($i=0;$i<3;$i++) { # reductions, see commentary
# in multiplication for details
$code.=<<___;
umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part
addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0]
sllx $acc0,32,$t0
addxccc $acc2,$t1,$acc1
srlx $acc0,32,$t1
addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001
sub $acc0,$t0,$t2 ! acc0*0xFFFFFFFF00000001, low part
addxc %g0,$t3,$acc3 ! cant't overflow
___
}
$code.=<<___;
umulxhi $acc0,$poly3,$t3 ! acc0*0xFFFFFFFF00000001, high part
addcc $acc1,$t0,$acc0 ! +=acc[0]<<96 and omit acc[0]
addxccc $acc2,$t1,$acc1
addxccc $acc3,$t2,$acc2 ! +=acc[0]*0xFFFFFFFF00000001
addxc %g0,$t3,$acc3 ! can't overflow
addcc $acc0,$acc4,$acc0 ! accumulate upper half
addxccc $acc1,$acc5,$acc1
addxccc $acc2,$acc6,$acc2
addxccc $acc3,$acc7,$acc3
addxc %g0,%g0,$acc4
.Lmul_final_vis3:
! Final step is "if result > mod, subtract mod", but as comparison
! means subtraction, we do the subtraction and then copy outcome
! if it didn't borrow. But note that as we [have to] replace
! subtraction with addition with negative, carry/borrow logic is
! inverse.
addcc $acc0,1,$t0 ! add -modulus, i.e. subtract
not $poly3,$poly3 ! restore 0x00000000FFFFFFFE
addxccc $acc1,$poly1,$t1
addxccc $acc2,$minus1,$t2
addxccc $acc3,$poly3,$t3
addxccc $acc4,$minus1,%g0 ! did it carry?
movcs %xcc,$t0,$acc0
movcs %xcc,$t1,$acc1
stx $acc0,[$rp]
movcs %xcc,$t2,$acc2
stx $acc1,[$rp+8]
movcs %xcc,$t3,$acc3
stx $acc2,[$rp+16]
retl
stx $acc3,[$rp+24]
.type __ecp_nistz256_sqr_mont_vis3,#function
.size __ecp_nistz256_sqr_mont_vis3,.-__ecp_nistz256_sqr_mont_vis3
___
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
{
my ($res_x,$res_y,$res_z,
$in_x,$in_y,$in_z,
$S,$M,$Zsqr,$tmp0)=map(32*$_,(0..9));
# above map() describes stack layout with 10 temporary
# 256-bit vectors on top.
$code.=<<___;
.align 32
ecp_nistz256_point_double_vis3:
save %sp,-STACK64_FRAME-32*10,%sp
mov $rp,$rp_real
.Ldouble_shortcut_vis3:
mov -1,$minus1
mov -2,$poly3
sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000
srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE
! convert input to uint64_t[4]
ld [$ap],$a0 ! in_x
ld [$ap+4],$t0
ld [$ap+8],$a1
ld [$ap+12],$t1
ld [$ap+16],$a2
ld [$ap+20],$t2
ld [$ap+24],$a3
ld [$ap+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
ld [$ap+32],$acc0 ! in_y
or $a0,$t0,$a0
ld [$ap+32+4],$t0
sllx $t2,32,$t2
ld [$ap+32+8],$acc1
or $a1,$t1,$a1
ld [$ap+32+12],$t1
sllx $t3,32,$t3
ld [$ap+32+16],$acc2
or $a2,$t2,$a2
ld [$ap+32+20],$t2
or $a3,$t3,$a3
ld [$ap+32+24],$acc3
sllx $t0,32,$t0
ld [$ap+32+28],$t3
sllx $t1,32,$t1
stx $a0,[%sp+LOCALS64+$in_x]
sllx $t2,32,$t2
stx $a1,[%sp+LOCALS64+$in_x+8]
sllx $t3,32,$t3
stx $a2,[%sp+LOCALS64+$in_x+16]
or $acc0,$t0,$acc0
stx $a3,[%sp+LOCALS64+$in_x+24]
or $acc1,$t1,$acc1
stx $acc0,[%sp+LOCALS64+$in_y]
or $acc2,$t2,$acc2
stx $acc1,[%sp+LOCALS64+$in_y+8]
or $acc3,$t3,$acc3
stx $acc2,[%sp+LOCALS64+$in_y+16]
stx $acc3,[%sp+LOCALS64+$in_y+24]
ld [$ap+64],$a0 ! in_z
ld [$ap+64+4],$t0
ld [$ap+64+8],$a1
ld [$ap+64+12],$t1
ld [$ap+64+16],$a2
ld [$ap+64+20],$t2
ld [$ap+64+24],$a3
ld [$ap+64+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
or $a0,$t0,$a0
sllx $t2,32,$t2
or $a1,$t1,$a1
sllx $t3,32,$t3
or $a2,$t2,$a2
or $a3,$t3,$a3
sllx $t0,32,$t0
sllx $t1,32,$t1
stx $a0,[%sp+LOCALS64+$in_z]
sllx $t2,32,$t2
stx $a1,[%sp+LOCALS64+$in_z+8]
sllx $t3,32,$t3
stx $a2,[%sp+LOCALS64+$in_z+16]
stx $a3,[%sp+LOCALS64+$in_z+24]
! in_y is still in $acc0-$acc3
call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(S, in_y);
add %sp,LOCALS64+$S,$rp
! in_z is still in $a0-$a3
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Zsqr, in_z);
add %sp,LOCALS64+$Zsqr,$rp
mov $acc0,$a0 ! put Zsqr aside
mov $acc1,$a1
mov $acc2,$a2
mov $acc3,$a3
add %sp,LOCALS64+$in_x,$bp
call __ecp_nistz256_add_vis3 ! p256_add(M, Zsqr, in_x);
add %sp,LOCALS64+$M,$rp
mov $a0,$acc0 ! restore Zsqr
ldx [%sp+LOCALS64+$S],$a0 ! forward load
mov $a1,$acc1
ldx [%sp+LOCALS64+$S+8],$a1
mov $a2,$acc2
ldx [%sp+LOCALS64+$S+16],$a2
mov $a3,$acc3
ldx [%sp+LOCALS64+$S+24],$a3
add %sp,LOCALS64+$in_x,$bp
call __ecp_nistz256_sub_morf_vis3 ! p256_sub(Zsqr, in_x, Zsqr);
add %sp,LOCALS64+$Zsqr,$rp
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(S, S);
add %sp,LOCALS64+$S,$rp
ldx [%sp+LOCALS64+$in_z],$bi
ldx [%sp+LOCALS64+$in_y],$a0
ldx [%sp+LOCALS64+$in_y+8],$a1
ldx [%sp+LOCALS64+$in_y+16],$a2
ldx [%sp+LOCALS64+$in_y+24],$a3
add %sp,LOCALS64+$in_z,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(tmp0, in_z, in_y);
add %sp,LOCALS64+$tmp0,$rp
ldx [%sp+LOCALS64+$M],$bi ! forward load
ldx [%sp+LOCALS64+$Zsqr],$a0
ldx [%sp+LOCALS64+$Zsqr+8],$a1
ldx [%sp+LOCALS64+$Zsqr+16],$a2
ldx [%sp+LOCALS64+$Zsqr+24],$a3
call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(res_z, tmp0);
add %sp,LOCALS64+$res_z,$rp
add %sp,LOCALS64+$M,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(M, M, Zsqr);
add %sp,LOCALS64+$M,$rp
mov $acc0,$a0 ! put aside M
mov $acc1,$a1
mov $acc2,$a2
mov $acc3,$a3
call __ecp_nistz256_mul_by_2_vis3
add %sp,LOCALS64+$M,$rp
mov $a0,$t0 ! copy M
ldx [%sp+LOCALS64+$S],$a0 ! forward load
mov $a1,$t1
ldx [%sp+LOCALS64+$S+8],$a1
mov $a2,$t2
ldx [%sp+LOCALS64+$S+16],$a2
mov $a3,$t3
ldx [%sp+LOCALS64+$S+24],$a3
call __ecp_nistz256_add_noload_vis3 ! p256_mul_by_3(M, M);
add %sp,LOCALS64+$M,$rp
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(tmp0, S);
add %sp,LOCALS64+$tmp0,$rp
ldx [%sp+LOCALS64+$S],$bi ! forward load
ldx [%sp+LOCALS64+$in_x],$a0
ldx [%sp+LOCALS64+$in_x+8],$a1
ldx [%sp+LOCALS64+$in_x+16],$a2
ldx [%sp+LOCALS64+$in_x+24],$a3
call __ecp_nistz256_div_by_2_vis3 ! p256_div_by_2(res_y, tmp0);
add %sp,LOCALS64+$res_y,$rp
add %sp,LOCALS64+$S,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, in_x);
add %sp,LOCALS64+$S,$rp
ldx [%sp+LOCALS64+$M],$a0 ! forward load
ldx [%sp+LOCALS64+$M+8],$a1
ldx [%sp+LOCALS64+$M+16],$a2
ldx [%sp+LOCALS64+$M+24],$a3
call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(tmp0, S);
add %sp,LOCALS64+$tmp0,$rp
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(res_x, M);
add %sp,LOCALS64+$res_x,$rp
add %sp,LOCALS64+$tmp0,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, tmp0);
add %sp,LOCALS64+$res_x,$rp
ldx [%sp+LOCALS64+$M],$a0 ! forward load
ldx [%sp+LOCALS64+$M+8],$a1
ldx [%sp+LOCALS64+$M+16],$a2
ldx [%sp+LOCALS64+$M+24],$a3
add %sp,LOCALS64+$S,$bp
call __ecp_nistz256_sub_morf_vis3 ! p256_sub(S, S, res_x);
add %sp,LOCALS64+$S,$rp
mov $acc0,$bi
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S, S, M);
add %sp,LOCALS64+$S,$rp
ldx [%sp+LOCALS64+$res_x],$a0 ! forward load
ldx [%sp+LOCALS64+$res_x+8],$a1
ldx [%sp+LOCALS64+$res_x+16],$a2
ldx [%sp+LOCALS64+$res_x+24],$a3
add %sp,LOCALS64+$res_y,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, S, res_y);
add %sp,LOCALS64+$res_y,$bp
! convert output to uint_32[8]
srlx $a0,32,$t0
srlx $a1,32,$t1
st $a0,[$rp_real] ! res_x
srlx $a2,32,$t2
st $t0,[$rp_real+4]
srlx $a3,32,$t3
st $a1,[$rp_real+8]
st $t1,[$rp_real+12]
st $a2,[$rp_real+16]
st $t2,[$rp_real+20]
st $a3,[$rp_real+24]
st $t3,[$rp_real+28]
ldx [%sp+LOCALS64+$res_z],$a0 ! forward load
srlx $acc0,32,$t0
ldx [%sp+LOCALS64+$res_z+8],$a1
srlx $acc1,32,$t1
ldx [%sp+LOCALS64+$res_z+16],$a2
srlx $acc2,32,$t2
ldx [%sp+LOCALS64+$res_z+24],$a3
srlx $acc3,32,$t3
st $acc0,[$rp_real+32] ! res_y
st $t0, [$rp_real+32+4]
st $acc1,[$rp_real+32+8]
st $t1, [$rp_real+32+12]
st $acc2,[$rp_real+32+16]
st $t2, [$rp_real+32+20]
st $acc3,[$rp_real+32+24]
st $t3, [$rp_real+32+28]
srlx $a0,32,$t0
srlx $a1,32,$t1
st $a0,[$rp_real+64] ! res_z
srlx $a2,32,$t2
st $t0,[$rp_real+64+4]
srlx $a3,32,$t3
st $a1,[$rp_real+64+8]
st $t1,[$rp_real+64+12]
st $a2,[$rp_real+64+16]
st $t2,[$rp_real+64+20]
st $a3,[$rp_real+64+24]
st $t3,[$rp_real+64+28]
ret
restore
.type ecp_nistz256_point_double_vis3,#function
.size ecp_nistz256_point_double_vis3,.-ecp_nistz256_point_double_vis3
___
}
########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT *in2);
{
my ($res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y,$in2_z,
$H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2)=map(32*$_,(0..17));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
# above map() describes stack layout with 18 temporary
# 256-bit vectors on top. Then we reserve some space for
# !in1infty, !in2infty and result of check for zero.
$code.=<<___;
.globl ecp_nistz256_point_add_vis3
.align 32
ecp_nistz256_point_add_vis3:
save %sp,-STACK64_FRAME-32*18-32,%sp
mov $rp,$rp_real
mov -1,$minus1
mov -2,$poly3
sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000
srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE
! convert input to uint64_t[4]
ld [$bp],$a0 ! in2_x
ld [$bp+4],$t0
ld [$bp+8],$a1
ld [$bp+12],$t1
ld [$bp+16],$a2
ld [$bp+20],$t2
ld [$bp+24],$a3
ld [$bp+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
ld [$bp+32],$acc0 ! in2_y
or $a0,$t0,$a0
ld [$bp+32+4],$t0
sllx $t2,32,$t2
ld [$bp+32+8],$acc1
or $a1,$t1,$a1
ld [$bp+32+12],$t1
sllx $t3,32,$t3
ld [$bp+32+16],$acc2
or $a2,$t2,$a2
ld [$bp+32+20],$t2
or $a3,$t3,$a3
ld [$bp+32+24],$acc3
sllx $t0,32,$t0
ld [$bp+32+28],$t3
sllx $t1,32,$t1
stx $a0,[%sp+LOCALS64+$in2_x]
sllx $t2,32,$t2
stx $a1,[%sp+LOCALS64+$in2_x+8]
sllx $t3,32,$t3
stx $a2,[%sp+LOCALS64+$in2_x+16]
or $acc0,$t0,$acc0
stx $a3,[%sp+LOCALS64+$in2_x+24]
or $acc1,$t1,$acc1
stx $acc0,[%sp+LOCALS64+$in2_y]
or $acc2,$t2,$acc2
stx $acc1,[%sp+LOCALS64+$in2_y+8]
or $acc3,$t3,$acc3
stx $acc2,[%sp+LOCALS64+$in2_y+16]
stx $acc3,[%sp+LOCALS64+$in2_y+24]
ld [$bp+64],$acc0 ! in2_z
ld [$bp+64+4],$t0
ld [$bp+64+8],$acc1
ld [$bp+64+12],$t1
ld [$bp+64+16],$acc2
ld [$bp+64+20],$t2
ld [$bp+64+24],$acc3
ld [$bp+64+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
ld [$ap],$a0 ! in1_x
or $acc0,$t0,$acc0
ld [$ap+4],$t0
sllx $t2,32,$t2
ld [$ap+8],$a1
or $acc1,$t1,$acc1
ld [$ap+12],$t1
sllx $t3,32,$t3
ld [$ap+16],$a2
or $acc2,$t2,$acc2
ld [$ap+20],$t2
or $acc3,$t3,$acc3
ld [$ap+24],$a3
sllx $t0,32,$t0
ld [$ap+28],$t3
sllx $t1,32,$t1
stx $acc0,[%sp+LOCALS64+$in2_z]
sllx $t2,32,$t2
stx $acc1,[%sp+LOCALS64+$in2_z+8]
sllx $t3,32,$t3
stx $acc2,[%sp+LOCALS64+$in2_z+16]
stx $acc3,[%sp+LOCALS64+$in2_z+24]
or $acc1,$acc0,$acc0
or $acc3,$acc2,$acc2
or $acc2,$acc0,$acc0
movrnz $acc0,-1,$acc0 ! !in2infty
stx $acc0,[%fp+STACK_BIAS-8]
or $a0,$t0,$a0
ld [$ap+32],$acc0 ! in1_y
or $a1,$t1,$a1
ld [$ap+32+4],$t0
or $a2,$t2,$a2
ld [$ap+32+8],$acc1
or $a3,$t3,$a3
ld [$ap+32+12],$t1
ld [$ap+32+16],$acc2
ld [$ap+32+20],$t2
ld [$ap+32+24],$acc3
sllx $t0,32,$t0
ld [$ap+32+28],$t3
sllx $t1,32,$t1
stx $a0,[%sp+LOCALS64+$in1_x]
sllx $t2,32,$t2
stx $a1,[%sp+LOCALS64+$in1_x+8]
sllx $t3,32,$t3
stx $a2,[%sp+LOCALS64+$in1_x+16]
or $acc0,$t0,$acc0
stx $a3,[%sp+LOCALS64+$in1_x+24]
or $acc1,$t1,$acc1
stx $acc0,[%sp+LOCALS64+$in1_y]
or $acc2,$t2,$acc2
stx $acc1,[%sp+LOCALS64+$in1_y+8]
or $acc3,$t3,$acc3
stx $acc2,[%sp+LOCALS64+$in1_y+16]
stx $acc3,[%sp+LOCALS64+$in1_y+24]
ldx [%sp+LOCALS64+$in2_z],$a0 ! forward load
ldx [%sp+LOCALS64+$in2_z+8],$a1
ldx [%sp+LOCALS64+$in2_z+16],$a2
ldx [%sp+LOCALS64+$in2_z+24],$a3
ld [$ap+64],$acc0 ! in1_z
ld [$ap+64+4],$t0
ld [$ap+64+8],$acc1
ld [$ap+64+12],$t1
ld [$ap+64+16],$acc2
ld [$ap+64+20],$t2
ld [$ap+64+24],$acc3
ld [$ap+64+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
or $acc0,$t0,$acc0
sllx $t2,32,$t2
or $acc1,$t1,$acc1
sllx $t3,32,$t3
stx $acc0,[%sp+LOCALS64+$in1_z]
or $acc2,$t2,$acc2
stx $acc1,[%sp+LOCALS64+$in1_z+8]
or $acc3,$t3,$acc3
stx $acc2,[%sp+LOCALS64+$in1_z+16]
stx $acc3,[%sp+LOCALS64+$in1_z+24]
or $acc1,$acc0,$acc0
or $acc3,$acc2,$acc2
or $acc2,$acc0,$acc0
movrnz $acc0,-1,$acc0 ! !in1infty
stx $acc0,[%fp+STACK_BIAS-16]
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z2sqr, in2_z);
add %sp,LOCALS64+$Z2sqr,$rp
ldx [%sp+LOCALS64+$in1_z],$a0
ldx [%sp+LOCALS64+$in1_z+8],$a1
ldx [%sp+LOCALS64+$in1_z+16],$a2
ldx [%sp+LOCALS64+$in1_z+24],$a3
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z);
add %sp,LOCALS64+$Z1sqr,$rp
ldx [%sp+LOCALS64+$Z2sqr],$bi
ldx [%sp+LOCALS64+$in2_z],$a0
ldx [%sp+LOCALS64+$in2_z+8],$a1
ldx [%sp+LOCALS64+$in2_z+16],$a2
ldx [%sp+LOCALS64+$in2_z+24],$a3
add %sp,LOCALS64+$Z2sqr,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, Z2sqr, in2_z);
add %sp,LOCALS64+$S1,$rp
ldx [%sp+LOCALS64+$Z1sqr],$bi
ldx [%sp+LOCALS64+$in1_z],$a0
ldx [%sp+LOCALS64+$in1_z+8],$a1
ldx [%sp+LOCALS64+$in1_z+16],$a2
ldx [%sp+LOCALS64+$in1_z+24],$a3
add %sp,LOCALS64+$Z1sqr,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z);
add %sp,LOCALS64+$S2,$rp
ldx [%sp+LOCALS64+$S1],$bi
ldx [%sp+LOCALS64+$in1_y],$a0
ldx [%sp+LOCALS64+$in1_y+8],$a1
ldx [%sp+LOCALS64+$in1_y+16],$a2
ldx [%sp+LOCALS64+$in1_y+24],$a3
add %sp,LOCALS64+$S1,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S1, S1, in1_y);
add %sp,LOCALS64+$S1,$rp
ldx [%sp+LOCALS64+$S2],$bi
ldx [%sp+LOCALS64+$in2_y],$a0
ldx [%sp+LOCALS64+$in2_y+8],$a1
ldx [%sp+LOCALS64+$in2_y+16],$a2
ldx [%sp+LOCALS64+$in2_y+24],$a3
add %sp,LOCALS64+$S2,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y);
add %sp,LOCALS64+$S2,$rp
ldx [%sp+LOCALS64+$Z2sqr],$bi ! forward load
ldx [%sp+LOCALS64+$in1_x],$a0
ldx [%sp+LOCALS64+$in1_x+8],$a1
ldx [%sp+LOCALS64+$in1_x+16],$a2
ldx [%sp+LOCALS64+$in1_x+24],$a3
add %sp,LOCALS64+$S1,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, S1);
add %sp,LOCALS64+$R,$rp
or $acc1,$acc0,$acc0 ! see if result is zero
or $acc3,$acc2,$acc2
or $acc2,$acc0,$acc0
stx $acc0,[%fp+STACK_BIAS-24]
add %sp,LOCALS64+$Z2sqr,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U1, in1_x, Z2sqr);
add %sp,LOCALS64+$U1,$rp
ldx [%sp+LOCALS64+$Z1sqr],$bi
ldx [%sp+LOCALS64+$in2_x],$a0
ldx [%sp+LOCALS64+$in2_x+8],$a1
ldx [%sp+LOCALS64+$in2_x+16],$a2
ldx [%sp+LOCALS64+$in2_x+24],$a3
add %sp,LOCALS64+$Z1sqr,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in2_x, Z1sqr);
add %sp,LOCALS64+$U2,$rp
ldx [%sp+LOCALS64+$R],$a0 ! forward load
ldx [%sp+LOCALS64+$R+8],$a1
ldx [%sp+LOCALS64+$R+16],$a2
ldx [%sp+LOCALS64+$R+24],$a3
add %sp,LOCALS64+$U1,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, U1);
add %sp,LOCALS64+$H,$rp
or $acc1,$acc0,$acc0 ! see if result is zero
or $acc3,$acc2,$acc2
orcc $acc2,$acc0,$acc0
bne,pt %xcc,.Ladd_proceed_vis3 ! is_equal(U1,U2)?
nop
ldx [%fp+STACK_BIAS-8],$t0
ldx [%fp+STACK_BIAS-16],$t1
ldx [%fp+STACK_BIAS-24],$t2
andcc $t0,$t1,%g0
be,pt %xcc,.Ladd_proceed_vis3 ! (in1infty || in2infty)?
nop
andcc $t2,$t2,%g0
be,a,pt %xcc,.Ldouble_shortcut_vis3 ! is_equal(S1,S2)?
add %sp,32*(12-10)+32,%sp ! difference in frame sizes
st %g0,[$rp_real]
st %g0,[$rp_real+4]
st %g0,[$rp_real+8]
st %g0,[$rp_real+12]
st %g0,[$rp_real+16]
st %g0,[$rp_real+20]
st %g0,[$rp_real+24]
st %g0,[$rp_real+28]
st %g0,[$rp_real+32]
st %g0,[$rp_real+32+4]
st %g0,[$rp_real+32+8]
st %g0,[$rp_real+32+12]
st %g0,[$rp_real+32+16]
st %g0,[$rp_real+32+20]
st %g0,[$rp_real+32+24]
st %g0,[$rp_real+32+28]
st %g0,[$rp_real+64]
st %g0,[$rp_real+64+4]
st %g0,[$rp_real+64+8]
st %g0,[$rp_real+64+12]
st %g0,[$rp_real+64+16]
st %g0,[$rp_real+64+20]
st %g0,[$rp_real+64+24]
st %g0,[$rp_real+64+28]
b .Ladd_done_vis3
nop
.align 16
.Ladd_proceed_vis3:
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R);
add %sp,LOCALS64+$Rsqr,$rp
ldx [%sp+LOCALS64+$H],$bi
ldx [%sp+LOCALS64+$in1_z],$a0
ldx [%sp+LOCALS64+$in1_z+8],$a1
ldx [%sp+LOCALS64+$in1_z+16],$a2
ldx [%sp+LOCALS64+$in1_z+24],$a3
add %sp,LOCALS64+$H,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z);
add %sp,LOCALS64+$res_z,$rp
ldx [%sp+LOCALS64+$H],$a0
ldx [%sp+LOCALS64+$H+8],$a1
ldx [%sp+LOCALS64+$H+16],$a2
ldx [%sp+LOCALS64+$H+24],$a3
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H);
add %sp,LOCALS64+$Hsqr,$rp
ldx [%sp+LOCALS64+$res_z],$bi
ldx [%sp+LOCALS64+$in2_z],$a0
ldx [%sp+LOCALS64+$in2_z+8],$a1
ldx [%sp+LOCALS64+$in2_z+16],$a2
ldx [%sp+LOCALS64+$in2_z+24],$a3
add %sp,LOCALS64+$res_z,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, res_z, in2_z);
add %sp,LOCALS64+$res_z,$rp
ldx [%sp+LOCALS64+$H],$bi
ldx [%sp+LOCALS64+$Hsqr],$a0
ldx [%sp+LOCALS64+$Hsqr+8],$a1
ldx [%sp+LOCALS64+$Hsqr+16],$a2
ldx [%sp+LOCALS64+$Hsqr+24],$a3
add %sp,LOCALS64+$H,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H);
add %sp,LOCALS64+$Hcub,$rp
ldx [%sp+LOCALS64+$U1],$bi
ldx [%sp+LOCALS64+$Hsqr],$a0
ldx [%sp+LOCALS64+$Hsqr+8],$a1
ldx [%sp+LOCALS64+$Hsqr+16],$a2
ldx [%sp+LOCALS64+$Hsqr+24],$a3
add %sp,LOCALS64+$U1,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, U1, Hsqr);
add %sp,LOCALS64+$U2,$rp
call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2);
add %sp,LOCALS64+$Hsqr,$rp
add %sp,LOCALS64+$Rsqr,$bp
call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr);
add %sp,LOCALS64+$res_x,$rp
add %sp,LOCALS64+$Hcub,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub);
add %sp,LOCALS64+$res_x,$rp
ldx [%sp+LOCALS64+$S1],$bi ! forward load
ldx [%sp+LOCALS64+$Hcub],$a0
ldx [%sp+LOCALS64+$Hcub+8],$a1
ldx [%sp+LOCALS64+$Hcub+16],$a2
ldx [%sp+LOCALS64+$Hcub+24],$a3
add %sp,LOCALS64+$U2,$bp
call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x);
add %sp,LOCALS64+$res_y,$rp
add %sp,LOCALS64+$S1,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S1, Hcub);
add %sp,LOCALS64+$S2,$rp
ldx [%sp+LOCALS64+$R],$bi
ldx [%sp+LOCALS64+$res_y],$a0
ldx [%sp+LOCALS64+$res_y+8],$a1
ldx [%sp+LOCALS64+$res_y+16],$a2
ldx [%sp+LOCALS64+$res_y+24],$a3
add %sp,LOCALS64+$R,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R);
add %sp,LOCALS64+$res_y,$rp
add %sp,LOCALS64+$S2,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2);
add %sp,LOCALS64+$res_y,$rp
ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty
ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty
___
for($i=0;$i<96;$i+=16) { # conditional moves
$code.=<<___;
ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res
ldx [%sp+LOCALS64+$res_x+$i+8],$acc1
ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2
ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3
ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1
ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5
movrz $t1,$acc2,$acc0
movrz $t1,$acc3,$acc1
movrz $t2,$acc4,$acc0
movrz $t2,$acc5,$acc1
srlx $acc0,32,$acc2
srlx $acc1,32,$acc3
st $acc0,[$rp_real+$i]
st $acc2,[$rp_real+$i+4]
st $acc1,[$rp_real+$i+8]
st $acc3,[$rp_real+$i+12]
___
}
$code.=<<___;
.Ladd_done_vis3:
ret
restore
.type ecp_nistz256_point_add_vis3,#function
.size ecp_nistz256_point_add_vis3,.-ecp_nistz256_point_add_vis3
___
}
########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT_AFFINE *in2);
{
my ($res_x,$res_y,$res_z,
$in1_x,$in1_y,$in1_z,
$in2_x,$in2_y,
$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..14));
my $Z1sqr = $S2;
# above map() describes stack layout with 15 temporary
# 256-bit vectors on top. Then we reserve some space for
# !in1infty and !in2infty.
$code.=<<___;
.align 32
ecp_nistz256_point_add_affine_vis3:
save %sp,-STACK64_FRAME-32*15-32,%sp
mov $rp,$rp_real
mov -1,$minus1
mov -2,$poly3
sllx $minus1,32,$poly1 ! 0xFFFFFFFF00000000
srl $poly3,0,$poly3 ! 0x00000000FFFFFFFE
! convert input to uint64_t[4]
ld [$bp],$a0 ! in2_x
ld [$bp+4],$t0
ld [$bp+8],$a1
ld [$bp+12],$t1
ld [$bp+16],$a2
ld [$bp+20],$t2
ld [$bp+24],$a3
ld [$bp+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
ld [$bp+32],$acc0 ! in2_y
or $a0,$t0,$a0
ld [$bp+32+4],$t0
sllx $t2,32,$t2
ld [$bp+32+8],$acc1
or $a1,$t1,$a1
ld [$bp+32+12],$t1
sllx $t3,32,$t3
ld [$bp+32+16],$acc2
or $a2,$t2,$a2
ld [$bp+32+20],$t2
or $a3,$t3,$a3
ld [$bp+32+24],$acc3
sllx $t0,32,$t0
ld [$bp+32+28],$t3
sllx $t1,32,$t1
stx $a0,[%sp+LOCALS64+$in2_x]
sllx $t2,32,$t2
stx $a1,[%sp+LOCALS64+$in2_x+8]
sllx $t3,32,$t3
stx $a2,[%sp+LOCALS64+$in2_x+16]
or $acc0,$t0,$acc0
stx $a3,[%sp+LOCALS64+$in2_x+24]
or $acc1,$t1,$acc1
stx $acc0,[%sp+LOCALS64+$in2_y]
or $acc2,$t2,$acc2
stx $acc1,[%sp+LOCALS64+$in2_y+8]
or $acc3,$t3,$acc3
stx $acc2,[%sp+LOCALS64+$in2_y+16]
stx $acc3,[%sp+LOCALS64+$in2_y+24]
or $a1,$a0,$a0
or $a3,$a2,$a2
or $acc1,$acc0,$acc0
or $acc3,$acc2,$acc2
or $a2,$a0,$a0
or $acc2,$acc0,$acc0
or $acc0,$a0,$a0
movrnz $a0,-1,$a0 ! !in2infty
stx $a0,[%fp+STACK_BIAS-8]
ld [$ap],$a0 ! in1_x
ld [$ap+4],$t0
ld [$ap+8],$a1
ld [$ap+12],$t1
ld [$ap+16],$a2
ld [$ap+20],$t2
ld [$ap+24],$a3
ld [$ap+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
ld [$ap+32],$acc0 ! in1_y
or $a0,$t0,$a0
ld [$ap+32+4],$t0
sllx $t2,32,$t2
ld [$ap+32+8],$acc1
or $a1,$t1,$a1
ld [$ap+32+12],$t1
sllx $t3,32,$t3
ld [$ap+32+16],$acc2
or $a2,$t2,$a2
ld [$ap+32+20],$t2
or $a3,$t3,$a3
ld [$ap+32+24],$acc3
sllx $t0,32,$t0
ld [$ap+32+28],$t3
sllx $t1,32,$t1
stx $a0,[%sp+LOCALS64+$in1_x]
sllx $t2,32,$t2
stx $a1,[%sp+LOCALS64+$in1_x+8]
sllx $t3,32,$t3
stx $a2,[%sp+LOCALS64+$in1_x+16]
or $acc0,$t0,$acc0
stx $a3,[%sp+LOCALS64+$in1_x+24]
or $acc1,$t1,$acc1
stx $acc0,[%sp+LOCALS64+$in1_y]
or $acc2,$t2,$acc2
stx $acc1,[%sp+LOCALS64+$in1_y+8]
or $acc3,$t3,$acc3
stx $acc2,[%sp+LOCALS64+$in1_y+16]
stx $acc3,[%sp+LOCALS64+$in1_y+24]
ld [$ap+64],$a0 ! in1_z
ld [$ap+64+4],$t0
ld [$ap+64+8],$a1
ld [$ap+64+12],$t1
ld [$ap+64+16],$a2
ld [$ap+64+20],$t2
ld [$ap+64+24],$a3
ld [$ap+64+28],$t3
sllx $t0,32,$t0
sllx $t1,32,$t1
or $a0,$t0,$a0
sllx $t2,32,$t2
or $a1,$t1,$a1
sllx $t3,32,$t3
stx $a0,[%sp+LOCALS64+$in1_z]
or $a2,$t2,$a2
stx $a1,[%sp+LOCALS64+$in1_z+8]
or $a3,$t3,$a3
stx $a2,[%sp+LOCALS64+$in1_z+16]
stx $a3,[%sp+LOCALS64+$in1_z+24]
or $a1,$a0,$t0
or $a3,$a2,$t2
or $t2,$t0,$t0
movrnz $t0,-1,$t0 ! !in1infty
stx $t0,[%fp+STACK_BIAS-16]
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Z1sqr, in1_z);
add %sp,LOCALS64+$Z1sqr,$rp
ldx [%sp+LOCALS64+$in2_x],$bi
mov $acc0,$a0
mov $acc1,$a1
mov $acc2,$a2
mov $acc3,$a3
add %sp,LOCALS64+$in2_x,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, Z1sqr, in2_x);
add %sp,LOCALS64+$U2,$rp
ldx [%sp+LOCALS64+$Z1sqr],$bi ! forward load
ldx [%sp+LOCALS64+$in1_z],$a0
ldx [%sp+LOCALS64+$in1_z+8],$a1
ldx [%sp+LOCALS64+$in1_z+16],$a2
ldx [%sp+LOCALS64+$in1_z+24],$a3
add %sp,LOCALS64+$in1_x,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(H, U2, in1_x);
add %sp,LOCALS64+$H,$rp
add %sp,LOCALS64+$Z1sqr,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, Z1sqr, in1_z);
add %sp,LOCALS64+$S2,$rp
ldx [%sp+LOCALS64+$H],$bi
ldx [%sp+LOCALS64+$in1_z],$a0
ldx [%sp+LOCALS64+$in1_z+8],$a1
ldx [%sp+LOCALS64+$in1_z+16],$a2
ldx [%sp+LOCALS64+$in1_z+24],$a3
add %sp,LOCALS64+$H,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_z, H, in1_z);
add %sp,LOCALS64+$res_z,$rp
ldx [%sp+LOCALS64+$S2],$bi
ldx [%sp+LOCALS64+$in2_y],$a0
ldx [%sp+LOCALS64+$in2_y+8],$a1
ldx [%sp+LOCALS64+$in2_y+16],$a2
ldx [%sp+LOCALS64+$in2_y+24],$a3
add %sp,LOCALS64+$S2,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, S2, in2_y);
add %sp,LOCALS64+$S2,$rp
ldx [%sp+LOCALS64+$H],$a0 ! forward load
ldx [%sp+LOCALS64+$H+8],$a1
ldx [%sp+LOCALS64+$H+16],$a2
ldx [%sp+LOCALS64+$H+24],$a3
add %sp,LOCALS64+$in1_y,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(R, S2, in1_y);
add %sp,LOCALS64+$R,$rp
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Hsqr, H);
add %sp,LOCALS64+$Hsqr,$rp
ldx [%sp+LOCALS64+$R],$a0
ldx [%sp+LOCALS64+$R+8],$a1
ldx [%sp+LOCALS64+$R+16],$a2
ldx [%sp+LOCALS64+$R+24],$a3
call __ecp_nistz256_sqr_mont_vis3 ! p256_sqr_mont(Rsqr, R);
add %sp,LOCALS64+$Rsqr,$rp
ldx [%sp+LOCALS64+$H],$bi
ldx [%sp+LOCALS64+$Hsqr],$a0
ldx [%sp+LOCALS64+$Hsqr+8],$a1
ldx [%sp+LOCALS64+$Hsqr+16],$a2
ldx [%sp+LOCALS64+$Hsqr+24],$a3
add %sp,LOCALS64+$H,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(Hcub, Hsqr, H);
add %sp,LOCALS64+$Hcub,$rp
ldx [%sp+LOCALS64+$Hsqr],$bi
ldx [%sp+LOCALS64+$in1_x],$a0
ldx [%sp+LOCALS64+$in1_x+8],$a1
ldx [%sp+LOCALS64+$in1_x+16],$a2
ldx [%sp+LOCALS64+$in1_x+24],$a3
add %sp,LOCALS64+$Hsqr,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(U2, in1_x, Hsqr);
add %sp,LOCALS64+$U2,$rp
call __ecp_nistz256_mul_by_2_vis3 ! p256_mul_by_2(Hsqr, U2);
add %sp,LOCALS64+$Hsqr,$rp
add %sp,LOCALS64+$Rsqr,$bp
call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_x, Rsqr, Hsqr);
add %sp,LOCALS64+$res_x,$rp
add %sp,LOCALS64+$Hcub,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_x, res_x, Hcub);
add %sp,LOCALS64+$res_x,$rp
ldx [%sp+LOCALS64+$Hcub],$bi ! forward load
ldx [%sp+LOCALS64+$in1_y],$a0
ldx [%sp+LOCALS64+$in1_y+8],$a1
ldx [%sp+LOCALS64+$in1_y+16],$a2
ldx [%sp+LOCALS64+$in1_y+24],$a3
add %sp,LOCALS64+$U2,$bp
call __ecp_nistz256_sub_morf_vis3 ! p256_sub(res_y, U2, res_x);
add %sp,LOCALS64+$res_y,$rp
add %sp,LOCALS64+$Hcub,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(S2, in1_y, Hcub);
add %sp,LOCALS64+$S2,$rp
ldx [%sp+LOCALS64+$R],$bi
ldx [%sp+LOCALS64+$res_y],$a0
ldx [%sp+LOCALS64+$res_y+8],$a1
ldx [%sp+LOCALS64+$res_y+16],$a2
ldx [%sp+LOCALS64+$res_y+24],$a3
add %sp,LOCALS64+$R,$bp
call __ecp_nistz256_mul_mont_vis3 ! p256_mul_mont(res_y, res_y, R);
add %sp,LOCALS64+$res_y,$rp
add %sp,LOCALS64+$S2,$bp
call __ecp_nistz256_sub_from_vis3 ! p256_sub(res_y, res_y, S2);
add %sp,LOCALS64+$res_y,$rp
ldx [%fp+STACK_BIAS-16],$t1 ! !in1infty
ldx [%fp+STACK_BIAS-8],$t2 ! !in2infty
1: call .+8
add %o7,.Lone_mont_vis3-1b,$bp
___
for($i=0;$i<64;$i+=16) { # conditional moves
$code.=<<___;
ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res
ldx [%sp+LOCALS64+$res_x+$i+8],$acc1
ldx [%sp+LOCALS64+$in2_x+$i],$acc2 ! in2
ldx [%sp+LOCALS64+$in2_x+$i+8],$acc3
ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1
ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5
movrz $t1,$acc2,$acc0
movrz $t1,$acc3,$acc1
movrz $t2,$acc4,$acc0
movrz $t2,$acc5,$acc1
srlx $acc0,32,$acc2
srlx $acc1,32,$acc3
st $acc0,[$rp_real+$i]
st $acc2,[$rp_real+$i+4]
st $acc1,[$rp_real+$i+8]
st $acc3,[$rp_real+$i+12]
___
}
for(;$i<96;$i+=16) {
$code.=<<___;
ldx [%sp+LOCALS64+$res_x+$i],$acc0 ! res
ldx [%sp+LOCALS64+$res_x+$i+8],$acc1
ldx [$bp+$i-64],$acc2 ! "in2"
ldx [$bp+$i-64+8],$acc3
ldx [%sp+LOCALS64+$in1_x+$i],$acc4 ! in1
ldx [%sp+LOCALS64+$in1_x+$i+8],$acc5
movrz $t1,$acc2,$acc0
movrz $t1,$acc3,$acc1
movrz $t2,$acc4,$acc0
movrz $t2,$acc5,$acc1
srlx $acc0,32,$acc2
srlx $acc1,32,$acc3
st $acc0,[$rp_real+$i]
st $acc2,[$rp_real+$i+4]
st $acc1,[$rp_real+$i+8]
st $acc3,[$rp_real+$i+12]
___
}
$code.=<<___;
ret
restore
.type ecp_nistz256_point_add_affine_vis3,#function
.size ecp_nistz256_point_add_affine_vis3,.-ecp_nistz256_point_add_affine_vis3
.align 64
.Lone_mont_vis3:
.long 0x00000000,0x00000001, 0xffffffff,0x00000000
.long 0xffffffff,0xffffffff, 0x00000000,0xfffffffe
.align 64
___
} }}}
# Purpose of these subroutines is to explicitly encode VIS instructions,
# so that one can compile the module without having to specify VIS
# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
# Idea is to reserve for option to produce "universal" binary and let
# programmer detect if current CPU is VIS capable at run-time.
sub unvis3 {
my ($mnemonic,$rs1,$rs2,$rd)=@_;
my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
my ($ref,$opf);
my %visopf = ( "addxc" => 0x011,
"addxccc" => 0x013,
"umulxhi" => 0x016 );
$ref = "$mnemonic\t$rs1,$rs2,$rd";
if ($opf=$visopf{$mnemonic}) {
foreach ($rs1,$rs2,$rd) {
return $ref if (!/%([goli])([0-9])/);
$_=$bias{$1}+$2;
}
return sprintf ".word\t0x%08x !%s",
0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
$ref;
} else {
return $ref;
}
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
s/\b(umulxhi|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
&unvis3($1,$2,$3,$4)
/ge;
print $_,"\n";
}
close STDOUT;