openssl/ssl/t1_lib.c

2440 lines
77 KiB
C
Raw Normal View History

/*
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <stdlib.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/ocsp.h>
#include <openssl/conf.h>
#include <openssl/x509v3.h>
#include <openssl/dh.h>
#include <openssl/bn.h>
#include "internal/nelem.h"
#include "ssl_locl.h"
#include <openssl/ct.h>
SSL3_ENC_METHOD const TLSv1_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
0,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_1_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_EXPLICIT_IV,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_2_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
| SSL_ENC_FLAG_TLS1_2_CIPHERS,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
SSL3_ENC_METHOD const TLSv1_3_enc_data = {
tls13_enc,
tls1_mac,
tls13_setup_key_block,
tls13_generate_master_secret,
tls13_change_cipher_state,
tls13_final_finish_mac,
TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
tls13_alert_code,
tls13_export_keying_material,
SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
ssl3_set_handshake_header,
tls_close_construct_packet,
ssl3_handshake_write
};
long tls1_default_timeout(void)
{
/*
* 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
* http, the cache would over fill
*/
return (60 * 60 * 2);
}
1999-04-19 21:31:43 +00:00
int tls1_new(SSL *s)
{
if (!ssl3_new(s))
return 0;
if (!s->method->ssl_clear(s))
return 0;
return 1;
}
1999-04-19 21:31:43 +00:00
void tls1_free(SSL *s)
{
OPENSSL_free(s->ext.session_ticket);
ssl3_free(s);
}
int tls1_clear(SSL *s)
{
if (!ssl3_clear(s))
return 0;
if (s->method->version == TLS_ANY_VERSION)
s->version = TLS_MAX_VERSION;
else
s->version = s->method->version;
return 1;
}
#ifndef OPENSSL_NO_EC
typedef struct {
int nid; /* Curve NID */
int secbits; /* Bits of security (from SP800-57) */
unsigned int flags; /* Flags: currently just field type */
} tls_curve_info;
/*
* Table of curve information.
* Do not delete entries or reorder this array! It is used as a lookup
* table: the index of each entry is one less than the TLS curve id.
*/
static const tls_curve_info nid_list[] = {
{NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */
{NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */
{NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */
{NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */
{NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */
{NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */
{NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */
{NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */
{NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */
{NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */
{NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */
{NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */
{NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */
{NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */
{NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */
{NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */
{NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */
{NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */
{NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */
{NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */
{NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */
{NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */
{NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */
{NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */
{NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */
{NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */
{NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */
{NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */
{EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */
};
static const unsigned char ecformats_default[] = {
TLSEXT_ECPOINTFORMAT_uncompressed,
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
};
/* The default curves */
static const unsigned char eccurves_default[] = {
0, 29, /* X25519 (29) */
0, 23, /* secp256r1 (23) */
0, 25, /* secp521r1 (25) */
0, 24, /* secp384r1 (24) */
};
static const unsigned char suiteb_curves[] = {
0, TLSEXT_curve_P_256,
0, TLSEXT_curve_P_384
};
int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags)
{
const tls_curve_info *cinfo;
/* ECC curves from RFC 4492 and RFC 7027 */
if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list)))
return 0;
cinfo = nid_list + curve_id - 1;
if (pflags)
*pflags = cinfo->flags;
return cinfo->nid;
}
int tls1_ec_nid2curve_id(int nid)
{
size_t i;
for (i = 0; i < OSSL_NELEM(nid_list); i++) {
if (nid_list[i].nid == nid)
return (int)(i + 1);
}
return 0;
}
/*
* Get curves list, if "sess" is set return client curves otherwise
* preferred list.
* Sets |num_curves| to the number of curves in the list, i.e.,
* the length of |pcurves| is 2 * num_curves.
* Returns 1 on success and 0 if the client curves list has invalid format.
* The latter indicates an internal error: we should not be accepting such
* lists in the first place.
* TODO(emilia): we should really be storing the curves list in explicitly
* parsed form instead. (However, this would affect binary compatibility
* so cannot happen in the 1.0.x series.)
*/
int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves,
size_t *num_curves)
{
size_t pcurveslen = 0;
if (sess) {
*pcurves = s->session->ext.supportedgroups;
pcurveslen = s->session->ext.supportedgroups_len;
} else {
/* For Suite B mode only include P-256, P-384 */
switch (tls1_suiteb(s)) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
*pcurves = suiteb_curves;
pcurveslen = sizeof(suiteb_curves);
break;
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*pcurves = suiteb_curves;
pcurveslen = 2;
break;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*pcurves = suiteb_curves + 2;
pcurveslen = 2;
break;
default:
*pcurves = s->ext.supportedgroups;
pcurveslen = s->ext.supportedgroups_len;
}
if (!*pcurves) {
*pcurves = eccurves_default;
pcurveslen = sizeof(eccurves_default);
}
}
/* We do not allow odd length arrays to enter the system. */
if (pcurveslen & 1) {
SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR);
*num_curves = 0;
return 0;
}
*num_curves = pcurveslen / 2;
return 1;
}
/* See if curve is allowed by security callback */
int tls_curve_allowed(SSL *s, const unsigned char *curve, int op)
{
const tls_curve_info *cinfo;
if (curve[0])
return 1;
if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list)))
return 0;
cinfo = &nid_list[curve[1] - 1];
# ifdef OPENSSL_NO_EC2M
if (cinfo->flags & TLS_CURVE_CHAR2)
return 0;
# endif
return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve);
}
2012-07-24 13:47:40 +00:00
/* Check a curve is one of our preferences */
int tls1_check_curve(SSL *s, const unsigned char *p, size_t len)
{
const unsigned char *curves;
size_t num_curves, i;
unsigned int suiteb_flags = tls1_suiteb(s);
if (len != 3 || p[0] != NAMED_CURVE_TYPE)
return 0;
/* Check curve matches Suite B preferences */
if (suiteb_flags) {
unsigned long cid = s->s3->tmp.new_cipher->id;
if (p[1])
return 0;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
if (p[2] != TLSEXT_curve_P_256)
return 0;
} else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
if (p[2] != TLSEXT_curve_P_384)
return 0;
} else /* Should never happen */
return 0;
}
if (!tls1_get_curvelist(s, 0, &curves, &num_curves))
return 0;
for (i = 0; i < num_curves; i++, curves += 2) {
if (p[1] == curves[0] && p[2] == curves[1])
return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK);
}
return 0;
}
/*-
* For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef
* if there is no match.
* For nmatch == -1, return number of matches
* For nmatch == -2, return the NID of the group to use for
* an EC tmp key, or NID_undef if there is no match.
*/
int tls1_shared_group(SSL *s, int nmatch)
{
const unsigned char *pref, *supp;
size_t num_pref, num_supp, i, j;
int k;
/* Can't do anything on client side */
if (s->server == 0)
return -1;
if (nmatch == -2) {
if (tls1_suiteb(s)) {
/*
* For Suite B ciphersuite determines curve: we already know
* these are acceptable due to previous checks.
*/
unsigned long cid = s->s3->tmp.new_cipher->id;
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
return NID_X9_62_prime256v1; /* P-256 */
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
return NID_secp384r1; /* P-384 */
/* Should never happen */
return NID_undef;
}
/* If not Suite B just return first preference shared curve */
nmatch = 0;
}
/*
* Avoid truncation. tls1_get_curvelist takes an int
* but s->options is a long...
*/
if (!tls1_get_curvelist(s,
(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0,
&supp, &num_supp))
/* In practice, NID_undef == 0 but let's be precise. */
return nmatch == -1 ? 0 : NID_undef;
if (!tls1_get_curvelist(s,
(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0,
&pref, &num_pref))
return nmatch == -1 ? 0 : NID_undef;
for (k = 0, i = 0; i < num_pref; i++, pref += 2) {
const unsigned char *tsupp = supp;
for (j = 0; j < num_supp; j++, tsupp += 2) {
if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) {
if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED))
continue;
if (nmatch == k) {
int id = (pref[0] << 8) | pref[1];
return tls1_ec_curve_id2nid(id, NULL);
}
k++;
}
}
}
if (nmatch == -1)
return k;
/* Out of range (nmatch > k). */
return NID_undef;
}
int tls1_set_groups(unsigned char **pext, size_t *pextlen,
int *groups, size_t ngroups)
{
unsigned char *glist, *p;
size_t i;
/*
* Bitmap of groups included to detect duplicates: only works while group
* ids < 32
*/
unsigned long dup_list = 0;
glist = OPENSSL_malloc(ngroups * 2);
if (glist == NULL)
return 0;
for (i = 0, p = glist; i < ngroups; i++) {
unsigned long idmask;
int id;
/* TODO(TLS1.3): Convert for DH groups */
id = tls1_ec_nid2curve_id(groups[i]);
idmask = 1L << id;
if (!id || (dup_list & idmask)) {
OPENSSL_free(glist);
return 0;
}
dup_list |= idmask;
s2n(id, p);
}
OPENSSL_free(*pext);
*pext = glist;
*pextlen = ngroups * 2;
return 1;
}
# define MAX_CURVELIST 28
typedef struct {
size_t nidcnt;
int nid_arr[MAX_CURVELIST];
} nid_cb_st;
static int nid_cb(const char *elem, int len, void *arg)
{
nid_cb_st *narg = arg;
size_t i;
int nid;
char etmp[20];
if (elem == NULL)
return 0;
if (narg->nidcnt == MAX_CURVELIST)
return 0;
if (len > (int)(sizeof(etmp) - 1))
return 0;
memcpy(etmp, elem, len);
etmp[len] = 0;
nid = EC_curve_nist2nid(etmp);
if (nid == NID_undef)
nid = OBJ_sn2nid(etmp);
if (nid == NID_undef)
nid = OBJ_ln2nid(etmp);
if (nid == NID_undef)
return 0;
for (i = 0; i < narg->nidcnt; i++)
if (narg->nid_arr[i] == nid)
return 0;
narg->nid_arr[narg->nidcnt++] = nid;
return 1;
}
/* Set groups based on a colon separate list */
int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str)
{
nid_cb_st ncb;
ncb.nidcnt = 0;
if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb))
return 0;
if (pext == NULL)
return 1;
return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt);
}
/* For an EC key set TLS id and required compression based on parameters */
static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id,
EC_KEY *ec)
{
int id;
const EC_GROUP *grp;
if (!ec)
return 0;
/* Determine if it is a prime field */
grp = EC_KEY_get0_group(ec);
if (!grp)
return 0;
/* Determine curve ID */
id = EC_GROUP_get_curve_name(grp);
id = tls1_ec_nid2curve_id(id);
/* If no id return error: we don't support arbitrary explicit curves */
if (id == 0)
return 0;
curve_id[0] = 0;
curve_id[1] = (unsigned char)id;
if (comp_id) {
if (EC_KEY_get0_public_key(ec) == NULL)
return 0;
if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) {
*comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
} else {
if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME)
*comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
else
*comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
}
}
return 1;
}
/* Check an EC key is compatible with extensions */
static int tls1_check_ec_key(SSL *s,
unsigned char *curve_id, unsigned char *comp_id)
{
const unsigned char *pformats, *pcurves;
size_t num_formats, num_curves, i;
int j;
/*
* If point formats extension present check it, otherwise everything is
* supported (see RFC4492).
*/
if (comp_id && s->session->ext.ecpointformats) {
pformats = s->session->ext.ecpointformats;
num_formats = s->session->ext.ecpointformats_len;
for (i = 0; i < num_formats; i++, pformats++) {
if (*comp_id == *pformats)
break;
}
if (i == num_formats)
return 0;
}
if (!curve_id)
return 1;
/* Check curve is consistent with client and server preferences */
for (j = 0; j <= 1; j++) {
if (!tls1_get_curvelist(s, j, &pcurves, &num_curves))
return 0;
if (j == 1 && num_curves == 0) {
/*
* If we've not received any curves then skip this check.
* RFC 4492 does not require the supported elliptic curves extension
* so if it is not sent we can just choose any curve.
* It is invalid to send an empty list in the elliptic curves
* extension, so num_curves == 0 always means no extension.
*/
break;
}
for (i = 0; i < num_curves; i++, pcurves += 2) {
if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1])
break;
}
if (i == num_curves)
return 0;
/* For clients can only check sent curve list */
if (!s->server)
break;
}
return 1;
}
void tls1_get_formatlist(SSL *s, const unsigned char **pformats,
size_t *num_formats)
{
/*
* If we have a custom point format list use it otherwise use default
*/
if (s->ext.ecpointformats) {
*pformats = s->ext.ecpointformats;
*num_formats = s->ext.ecpointformats_len;
} else {
*pformats = ecformats_default;
/* For Suite B we don't support char2 fields */
if (tls1_suiteb(s))
*num_formats = sizeof(ecformats_default) - 1;
else
*num_formats = sizeof(ecformats_default);
}
}
/*
* Check cert parameters compatible with extensions: currently just checks EC
* certificates have compatible curves and compression.
*/
static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md)
{
unsigned char comp_id, curve_id[2];
EVP_PKEY *pkey;
int rv;
pkey = X509_get0_pubkey(x);
if (!pkey)
return 0;
/* If not EC nothing to do */
if (EVP_PKEY_id(pkey) != EVP_PKEY_EC)
return 1;
rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey));
if (!rv)
return 0;
/*
* Can't check curve_id for client certs as we don't have a supported
* curves extension.
*/
rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id);
if (!rv)
return 0;
/*
* Special case for suite B. We *MUST* sign using SHA256+P-256 or
* SHA384+P-384.
*/
if (check_ee_md && tls1_suiteb(s)) {
int check_md;
size_t i;
CERT *c = s->cert;
if (curve_id[0])
return 0;
/* Check to see we have necessary signing algorithm */
if (curve_id[1] == TLSEXT_curve_P_256)
check_md = NID_ecdsa_with_SHA256;
else if (curve_id[1] == TLSEXT_curve_P_384)
check_md = NID_ecdsa_with_SHA384;
else
return 0; /* Should never happen */
for (i = 0; i < c->shared_sigalgslen; i++)
if (check_md == c->shared_sigalgs[i]->sigandhash)
break;
if (i == c->shared_sigalgslen)
return 0;
}
return rv;
}
/*
* tls1_check_ec_tmp_key - Check EC temporary key compatibility
* @s: SSL connection
* @cid: Cipher ID we're considering using
*
* Checks that the kECDHE cipher suite we're considering using
* is compatible with the client extensions.
*
* Returns 0 when the cipher can't be used or 1 when it can.
*/
int tls1_check_ec_tmp_key(SSL *s, unsigned long cid)
{
/*
* If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
* curves permitted.
*/
if (tls1_suiteb(s)) {
unsigned char curve_id[2];
/* Curve to check determined by ciphersuite */
if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
curve_id[1] = TLSEXT_curve_P_256;
else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
curve_id[1] = TLSEXT_curve_P_384;
else
return 0;
curve_id[0] = 0;
/* Check this curve is acceptable */
if (!tls1_check_ec_key(s, curve_id, NULL))
return 0;
return 1;
}
/* Need a shared curve */
if (tls1_shared_group(s, 0))
return 1;
return 0;
}
2013-08-17 16:40:08 +00:00
#else
static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md)
{
return 1;
}
2013-08-17 16:40:08 +00:00
#endif /* OPENSSL_NO_EC */
/* Default sigalg schemes */
static const uint16_t tls12_sigalgs[] = {
#ifndef OPENSSL_NO_EC
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
TLSEXT_SIGALG_ed25519,
#endif
TLSEXT_SIGALG_rsa_pss_sha256,
TLSEXT_SIGALG_rsa_pss_sha384,
TLSEXT_SIGALG_rsa_pss_sha512,
TLSEXT_SIGALG_rsa_pkcs1_sha256,
TLSEXT_SIGALG_rsa_pkcs1_sha384,
TLSEXT_SIGALG_rsa_pkcs1_sha512,
#ifndef OPENSSL_NO_EC
TLSEXT_SIGALG_ecdsa_sha224,
TLSEXT_SIGALG_ecdsa_sha1,
#endif
TLSEXT_SIGALG_rsa_pkcs1_sha224,
TLSEXT_SIGALG_rsa_pkcs1_sha1,
#ifndef OPENSSL_NO_DSA
TLSEXT_SIGALG_dsa_sha224,
TLSEXT_SIGALG_dsa_sha1,
TLSEXT_SIGALG_dsa_sha256,
TLSEXT_SIGALG_dsa_sha384,
TLSEXT_SIGALG_dsa_sha512
#endif
};
#ifndef OPENSSL_NO_EC
static const uint16_t suiteb_sigalgs[] = {
TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
TLSEXT_SIGALG_ecdsa_secp384r1_sha384
};
#endif
static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
#ifndef OPENSSL_NO_EC
{"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA256, NID_X9_62_prime256v1},
{"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA384, NID_secp384r1},
{"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA512, NID_secp521r1},
{"ed25519", TLSEXT_SIGALG_ed25519,
NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
NID_undef, NID_undef},
{NULL, TLSEXT_SIGALG_ecdsa_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA224, NID_undef},
{NULL, TLSEXT_SIGALG_ecdsa_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
NID_ecdsa_with_SHA1, NID_undef},
#endif
{"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
NID_undef, NID_undef},
{"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
NID_undef, NID_undef},
{"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
NID_undef, NID_undef},
{"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha256WithRSAEncryption, NID_undef},
{"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha384WithRSAEncryption, NID_undef},
{"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha512WithRSAEncryption, NID_undef},
{"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha224WithRSAEncryption, NID_undef},
{"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_sha1WithRSAEncryption, NID_undef},
#ifndef OPENSSL_NO_DSA
{NULL, TLSEXT_SIGALG_dsa_sha256,
NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_dsa_with_SHA256, NID_undef},
{NULL, TLSEXT_SIGALG_dsa_sha384,
NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_undef, NID_undef},
{NULL, TLSEXT_SIGALG_dsa_sha512,
NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_undef, NID_undef},
{NULL, TLSEXT_SIGALG_dsa_sha224,
NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_undef, NID_undef},
{NULL, TLSEXT_SIGALG_dsa_sha1,
NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
NID_dsaWithSHA1, NID_undef},
#endif
#ifndef OPENSSL_NO_GOST
{NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
NID_undef, NID_undef},
{NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
NID_undef, NID_undef},
{NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
NID_id_GostR3410_2001, SSL_PKEY_GOST01,
NID_undef, NID_undef}
#endif
};
/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
static const SIGALG_LOOKUP legacy_rsa_sigalg = {
"rsa_pkcs1_md5_sha1", 0,
NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
EVP_PKEY_RSA, SSL_PKEY_RSA,
NID_undef, NID_undef
};
/*
* Default signature algorithm values used if signature algorithms not present.
* From RFC5246. Note: order must match certificate index order.
*/
static const uint16_t tls_default_sigalg[] = {
TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
0, /* SSL_PKEY_RSA_PSS_SIGN */
TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */
TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */
0 /* SSL_PKEY_ED25519 */
};
/* Lookup TLS signature algorithm */
static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg)
{
size_t i;
const SIGALG_LOOKUP *s;
for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
i++, s++) {
if (s->sigalg == sigalg)
return s;
}
return NULL;
}
/* Lookup hash: return 0 if invalid or not enabled */
int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
{
const EVP_MD *md;
if (lu == NULL)
return 0;
/* lu->hash == NID_undef means no associated digest */
if (lu->hash == NID_undef) {
md = NULL;
} else {
md = ssl_md(lu->hash_idx);
if (md == NULL)
return 0;
}
if (pmd)
*pmd = md;
return 1;
}
/*
* Return a signature algorithm for TLS < 1.2 where the signature type
* is fixed by the certificate type.
*/
static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx)
{
if (idx == -1) {
if (s->server) {
size_t i;
/* Work out index corresponding to ciphersuite */
for (i = 0; i < SSL_PKEY_NUM; i++) {
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i);
if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) {
idx = i;
break;
}
}
} else {
idx = s->cert->key - s->cert->pkeys;
}
}
if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
return NULL;
if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]);
if (!tls1_lookup_md(lu, NULL))
return NULL;
return lu;
}
return &legacy_rsa_sigalg;
}
/* Set peer sigalg based key type */
int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey)
{
size_t idx;
const SIGALG_LOOKUP *lu;
if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL)
return 0;
lu = tls1_get_legacy_sigalg(s, idx);
if (lu == NULL)
return 0;
s->s3->tmp.peer_sigalg = lu;
return 1;
}
size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs)
{
/*
* If Suite B mode use Suite B sigalgs only, ignore any other
* preferences.
*/
#ifndef OPENSSL_NO_EC
switch (tls1_suiteb(s)) {
case SSL_CERT_FLAG_SUITEB_128_LOS:
*psigs = suiteb_sigalgs;
return OSSL_NELEM(suiteb_sigalgs);
case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
*psigs = suiteb_sigalgs;
return 1;
case SSL_CERT_FLAG_SUITEB_192_LOS:
*psigs = suiteb_sigalgs + 1;
return 1;
}
#endif
/*
* We use client_sigalgs (if not NULL) if we're a server
* and sending a certificate request or if we're a client and
* determining which shared algorithm to use.
*/
if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
*psigs = s->cert->client_sigalgs;
return s->cert->client_sigalgslen;
} else if (s->cert->conf_sigalgs) {
*psigs = s->cert->conf_sigalgs;
return s->cert->conf_sigalgslen;
} else {
*psigs = tls12_sigalgs;
return OSSL_NELEM(tls12_sigalgs);
}
}
/*
* Check signature algorithm is consistent with sent supported signature
* algorithms and if so set relevant digest and signature scheme in
* s.
*/
int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey)
{
const uint16_t *sent_sigs;
const EVP_MD *md = NULL;
char sigalgstr[2];
size_t sent_sigslen, i;
int pkeyid = EVP_PKEY_id(pkey);
const SIGALG_LOOKUP *lu;
/* Should never happen */
if (pkeyid == -1)
return -1;
if (SSL_IS_TLS13(s)) {
/* Disallow DSA for TLS 1.3 */
if (pkeyid == EVP_PKEY_DSA) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* Only allow PSS for TLS 1.3 */
if (pkeyid == EVP_PKEY_RSA)
pkeyid = EVP_PKEY_RSA_PSS;
}
lu = tls1_lookup_sigalg(sig);
/*
* Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
* is consistent with signature: RSA keys can be used for RSA-PSS
*/
if (lu == NULL
|| (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
|| (pkeyid != lu->sig
&& (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
#ifndef OPENSSL_NO_EC
if (pkeyid == EVP_PKEY_EC) {
EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
if (SSL_IS_TLS13(s)) {
if (EC_KEY_get_conv_form(ec) != POINT_CONVERSION_UNCOMPRESSED) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
SSL_R_ILLEGAL_POINT_COMPRESSION);
return 0;
}
/* For TLS 1.3 check curve matches signature algorithm */
if (lu->curve != NID_undef && curve != lu->curve) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
return 0;
}
} else {
unsigned char curve_id[2], comp_id;
/* Check compression and curve matches extensions */
if (!tls1_set_ec_id(curve_id, &comp_id, ec))
return 0;
if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE);
return 0;
}
if (tls1_suiteb(s)) {
/* Check sigalg matches a permissible Suite B value */
if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
&& sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/*
* Suite B also requires P-256+SHA256 and P-384+SHA384:
* this matches the TLS 1.3 requirements so we can just
* check the curve is the expected TLS 1.3 value.
* If this fails an inappropriate digest is being used.
*/
if (curve != lu->curve) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG,
SSL_R_ILLEGAL_SUITEB_DIGEST);
return 0;
}
}
}
} else if (tls1_suiteb(s)) {
return 0;
}
#endif
/* Check signature matches a type we sent */
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
if (sig == *sent_sigs)
break;
}
/* Allow fallback to SHA1 if not strict mode */
if (i == sent_sigslen && (lu->hash != NID_sha1
|| s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
if (!tls1_lookup_md(lu, &md)) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST);
return 0;
}
if (md != NULL) {
/*
* Make sure security callback allows algorithm. For historical
* reasons we have to pass the sigalg as a two byte char array.
*/
sigalgstr[0] = (sig >> 8) & 0xff;
sigalgstr[1] = sig & 0xff;
if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK,
EVP_MD_size(md) * 4, EVP_MD_type(md),
(void *)sigalgstr)) {
SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
}
/* Store the sigalg the peer uses */
s->s3->tmp.peer_sigalg = lu;
return 1;
}
int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
{
if (s->s3->tmp.peer_sigalg == NULL)
return 0;
*pnid = s->s3->tmp.peer_sigalg->sig;
return 1;
}
/*
* Set a mask of disabled algorithms: an algorithm is disabled if it isn't
* supported, doesn't appear in supported signature algorithms, isn't supported
* by the enabled protocol versions or by the security level.
*
* This function should only be used for checking which ciphers are supported
* by the client.
*
* Call ssl_cipher_disabled() to check that it's enabled or not.
*/
void ssl_set_client_disabled(SSL *s)
{
s->s3->tmp.mask_a = 0;
s->s3->tmp.mask_k = 0;
ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
ssl_get_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver);
#ifndef OPENSSL_NO_PSK
/* with PSK there must be client callback set */
if (!s->psk_client_callback) {
s->s3->tmp.mask_a |= SSL_aPSK;
s->s3->tmp.mask_k |= SSL_PSK;
}
#endif /* OPENSSL_NO_PSK */
#ifndef OPENSSL_NO_SRP
if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
s->s3->tmp.mask_a |= SSL_aSRP;
s->s3->tmp.mask_k |= SSL_kSRP;
}
#endif
}
/*
* ssl_cipher_disabled - check that a cipher is disabled or not
* @s: SSL connection that you want to use the cipher on
* @c: cipher to check
* @op: Security check that you want to do
* @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
*
* Returns 1 when it's disabled, 0 when enabled.
*/
int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op, int ecdhe)
{
if (c->algorithm_mkey & s->s3->tmp.mask_k
|| c->algorithm_auth & s->s3->tmp.mask_a)
return 1;
if (s->s3->tmp.max_ver == 0)
return 1;
if (!SSL_IS_DTLS(s)) {
int min_tls = c->min_tls;
/*
* For historical reasons we will allow ECHDE to be selected by a server
* in SSLv3 if we are a client
*/
if (min_tls == TLS1_VERSION && ecdhe
&& (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
min_tls = SSL3_VERSION;
if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))
return 1;
}
if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver)
|| DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver)))
return 1;
return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
}
int tls_use_ticket(SSL *s)
{
if ((s->options & SSL_OP_NO_TICKET))
return 0;
return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
}
int tls1_set_server_sigalgs(SSL *s)
{
int al;
size_t i;
/* Clear any shared signature algorithms */
OPENSSL_free(s->cert->shared_sigalgs);
s->cert->shared_sigalgs = NULL;
s->cert->shared_sigalgslen = 0;
/* Clear certificate validity flags */
for (i = 0; i < SSL_PKEY_NUM; i++)
s->s3->tmp.valid_flags[i] = 0;
/*
* If peer sent no signature algorithms check to see if we support
* the default algorithm for each certificate type
*/
if (s->s3->tmp.peer_sigalgs == NULL) {
const uint16_t *sent_sigs;
size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
for (i = 0; i < SSL_PKEY_NUM; i++) {
const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
size_t j;
if (lu == NULL)
continue;
/* Check default matches a type we sent */
for (j = 0; j < sent_sigslen; j++) {
if (lu->sigalg == sent_sigs[j]) {
s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN;
break;
}
}
}
return 1;
}
if (!tls1_process_sigalgs(s)) {
SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE);
al = SSL_AD_INTERNAL_ERROR;
goto err;
}
if (s->cert->shared_sigalgs != NULL)
return 1;
/* Fatal error if no shared signature algorithms */
SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
al = SSL_AD_HANDSHAKE_FAILURE;
err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return 0;
}
/*-
* Gets the ticket information supplied by the client if any.
*
* hello: The parsed ClientHello data
2011-09-05 13:36:23 +00:00
* ret: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*
* If s->tls_session_secret_cb is set then we are expecting a pre-shared key
* ciphersuite, in which case we have no use for session tickets and one will
* never be decrypted, nor will s->ext.ticket_expected be set to 1.
2011-09-05 13:36:23 +00:00
*
* Returns:
* -1: fatal error, either from parsing or decrypting the ticket.
* 0: no ticket was found (or was ignored, based on settings).
* 1: a zero length extension was found, indicating that the client supports
* session tickets but doesn't currently have one to offer.
* 2: either s->tls_session_secret_cb was set, or a ticket was offered but
* couldn't be decrypted because of a non-fatal error.
* 3: a ticket was successfully decrypted and *ret was set.
*
* Side effects:
* Sets s->ext.ticket_expected to 1 if the server will have to issue
2011-09-05 13:36:23 +00:00
* a new session ticket to the client because the client indicated support
* (and s->tls_session_secret_cb is NULL) but the client either doesn't have
* a session ticket or we couldn't use the one it gave us, or if
* s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
* Otherwise, s->ext.ticket_expected is set to 0.
*/
TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello,
SSL_SESSION **ret)
{
int retv;
size_t size;
RAW_EXTENSION *ticketext;
*ret = NULL;
s->ext.ticket_expected = 0;
/*
* If tickets disabled or not supported by the protocol version
* (e.g. TLSv1.3) behave as if no ticket present to permit stateful
* resumption.
*/
if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
return TICKET_NONE;
ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
if (!ticketext->present)
return TICKET_NONE;
size = PACKET_remaining(&ticketext->data);
if (size == 0) {
/*
* The client will accept a ticket but doesn't currently have
* one.
*/
s->ext.ticket_expected = 1;
return TICKET_EMPTY;
}
if (s->ext.session_secret_cb) {
/*
* Indicate that the ticket couldn't be decrypted rather than
* generating the session from ticket now, trigger
* abbreviated handshake based on external mechanism to
* calculate the master secret later.
*/
return TICKET_NO_DECRYPT;
}
retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
hello->session_id, hello->session_id_len, ret);
switch (retv) {
case TICKET_NO_DECRYPT:
s->ext.ticket_expected = 1;
return TICKET_NO_DECRYPT;
case TICKET_SUCCESS:
return TICKET_SUCCESS;
case TICKET_SUCCESS_RENEW:
s->ext.ticket_expected = 1;
return TICKET_SUCCESS;
default:
return TICKET_FATAL_ERR_OTHER;
}
}
/*-
* tls_decrypt_ticket attempts to decrypt a session ticket.
2011-09-05 13:36:23 +00:00
*
* etick: points to the body of the session ticket extension.
* eticklen: the length of the session tickets extension.
2011-09-05 13:36:23 +00:00
* sess_id: points at the session ID.
* sesslen: the length of the session ID.
* psess: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*/
TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick,
size_t eticklen, const unsigned char *sess_id,
size_t sesslen, SSL_SESSION **psess)
{
SSL_SESSION *sess;
unsigned char *sdec;
const unsigned char *p;
int slen, renew_ticket = 0, declen;
TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER;
size_t mlen;
unsigned char tick_hmac[EVP_MAX_MD_SIZE];
HMAC_CTX *hctx = NULL;
EVP_CIPHER_CTX *ctx;
SSL_CTX *tctx = s->session_ctx;
/* Initialize session ticket encryption and HMAC contexts */
hctx = HMAC_CTX_new();
if (hctx == NULL)
return TICKET_FATAL_ERR_MALLOC;
ctx = EVP_CIPHER_CTX_new();
if (ctx == NULL) {
ret = TICKET_FATAL_ERR_MALLOC;
goto err;
}
if (tctx->ext.ticket_key_cb) {
unsigned char *nctick = (unsigned char *)etick;
int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16,
ctx, hctx, 0);
if (rv < 0)
goto err;
if (rv == 0) {
ret = TICKET_NO_DECRYPT;
goto err;
}
if (rv == 2)
renew_ticket = 1;
} else {
/* Check key name matches */
if (memcmp(etick, tctx->ext.tick_key_name,
sizeof(tctx->ext.tick_key_name)) != 0) {
ret = TICKET_NO_DECRYPT;
goto err;
}
if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key,
sizeof(tctx->ext.tick_hmac_key),
EVP_sha256(), NULL) <= 0
|| EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL,
tctx->ext.tick_aes_key,
etick
+ sizeof(tctx->ext.tick_key_name)) <= 0) {
goto err;
}
}
/*
* Attempt to process session ticket, first conduct sanity and integrity
* checks on ticket.
*/
mlen = HMAC_size(hctx);
if (mlen == 0) {
goto err;
}
/* Sanity check ticket length: must exceed keyname + IV + HMAC */
if (eticklen <=
TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) {
ret = TICKET_NO_DECRYPT;
goto err;
}
eticklen -= mlen;
/* Check HMAC of encrypted ticket */
if (HMAC_Update(hctx, etick, eticklen) <= 0
|| HMAC_Final(hctx, tick_hmac, NULL) <= 0) {
goto err;
}
HMAC_CTX_free(hctx);
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
EVP_CIPHER_CTX_free(ctx);
return TICKET_NO_DECRYPT;
}
/* Attempt to decrypt session data */
/* Move p after IV to start of encrypted ticket, update length */
p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx);
sdec = OPENSSL_malloc(eticklen);
if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
(int)eticklen) <= 0) {
EVP_CIPHER_CTX_free(ctx);
OPENSSL_free(sdec);
return TICKET_FATAL_ERR_OTHER;
}
if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
EVP_CIPHER_CTX_free(ctx);
OPENSSL_free(sdec);
return TICKET_NO_DECRYPT;
}
slen += declen;
EVP_CIPHER_CTX_free(ctx);
ctx = NULL;
p = sdec;
sess = d2i_SSL_SESSION(NULL, &p, slen);
slen -= p - sdec;
OPENSSL_free(sdec);
if (sess) {
/* Some additional consistency checks */
if (slen != 0 || sess->session_id_length != 0) {
SSL_SESSION_free(sess);
return TICKET_NO_DECRYPT;
}
/*
* The session ID, if non-empty, is used by some clients to detect
* that the ticket has been accepted. So we copy it to the session
* structure. If it is empty set length to zero as required by
* standard.
*/
if (sesslen)
memcpy(sess->session_id, sess_id, sesslen);
sess->session_id_length = sesslen;
*psess = sess;
if (renew_ticket)
return TICKET_SUCCESS_RENEW;
else
return TICKET_SUCCESS;
}
ERR_clear_error();
/*
* For session parse failure, indicate that we need to send a new ticket.
*/
return TICKET_NO_DECRYPT;
err:
EVP_CIPHER_CTX_free(ctx);
HMAC_CTX_free(hctx);
return ret;
}
/* Check to see if a signature algorithm is allowed */
static int tls12_sigalg_allowed(SSL *s, int op, const SIGALG_LOOKUP *lu)
{
unsigned char sigalgstr[2];
int secbits;
/* See if sigalgs is recognised and if hash is enabled */
if (!tls1_lookup_md(lu, NULL))
return 0;
/* DSA is not allowed in TLS 1.3 */
if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
return 0;
Disallow DSA/SHA1/etc. for pure TLS 1.3 ClientHellos In draft-ietf-tls-tls13-20 Appendix B we find that: This section describes protocol types and constants. Values listed as _RESERVED were used in previous versions of TLS and are listed here for completeness. TLS 1.3 implementations MUST NOT send them but might receive them from older TLS implementations. Similarly, in section 4.2.3 we see: Legacy algorithms Indicates algorithms which are being deprecated because they use algorithms with known weaknesses, specifically SHA-1 which is used in this context with either with RSA using RSASSA-PKCS1-v1_5 or ECDSA. These values refer solely to signatures which appear in certificates (see Section 4.4.2.2) and are not defined for use in signed TLS handshake messages. Endpoints SHOULD NOT negotiate these algorithms but are permitted to do so solely for backward compatibility. Clients offering these values MUST list them as the lowest priority (listed after all other algorithms in SignatureSchemeList). TLS 1.3 servers MUST NOT offer a SHA-1 signed certificate unless no valid certificate chain can be produced without it (see Section 4.4.2.2). However, we are currently sending the SHA2-based DSA signature schemes and many SHA1-based schemes, which is in contradiction with the specification. Because TLS 1.3 support will appear in OpenSSL 1.1, we are bound by stability requirements to continue to offer the DSA signature schemes and the deprecated hash algorithms. at least until OpenSSL 1.2. However, for pure TLS 1.3 clients that do not offer lower TLS versions, we can be compliant. Do so, and leave a note to revisit the issue when we are permitted to break with sacred historical tradition. Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/3326)
2017-04-24 23:20:33 +00:00
/* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */
if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION
&& (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
|| lu->hash_idx == SSL_MD_MD5_IDX
|| lu->hash_idx == SSL_MD_SHA224_IDX))
return 0;
/* See if public key algorithm allowed */
if (ssl_cert_is_disabled(lu->sig_idx))
return 0;
if (lu->hash == NID_undef)
return 1;
/* Security bits: half digest bits */
secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4;
/* Finally see if security callback allows it */
sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
sigalgstr[1] = lu->sigalg & 0xff;
return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
}
/*
* Get a mask of disabled public key algorithms based on supported signature
* algorithms. For example if no signature algorithm supports RSA then RSA is
* disabled.
*/
void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op)
{
const uint16_t *sigalgs;
size_t i, sigalgslen;
uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
/*
* Go through all signature algorithms seeing if we support any
* in disabled_mask.
*/
sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
for (i = 0; i < sigalgslen; i ++, sigalgs++) {
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs);
const SSL_CERT_LOOKUP *clu;
if (lu == NULL)
continue;
clu = ssl_cert_lookup_by_idx(lu->sig_idx);
/* If algorithm is disabled see if we can enable it */
if ((clu->amask & disabled_mask) != 0
&& tls12_sigalg_allowed(s, op, lu))
disabled_mask &= ~clu->amask;
}
*pmask_a |= disabled_mask;
}
int tls12_copy_sigalgs(SSL *s, WPACKET *pkt,
const uint16_t *psig, size_t psiglen)
{
size_t i;
int rv = 0;
for (i = 0; i < psiglen; i++, psig++) {
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig);
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
continue;
if (!WPACKET_put_bytes_u16(pkt, *psig))
return 0;
/*
* If TLS 1.3 must have at least one valid TLS 1.3 message
* signing algorithm: i.e. neither RSA nor SHA1/SHA224
*/
if (rv == 0 && (!SSL_IS_TLS13(s)
|| (lu->sig != EVP_PKEY_RSA
&& lu->hash != NID_sha1
&& lu->hash != NID_sha224)))
rv = 1;
}
if (rv == 0)
SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return rv;
}
/* Given preference and allowed sigalgs set shared sigalgs */
static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig,
const uint16_t *pref, size_t preflen,
const uint16_t *allow, size_t allowlen)
{
const uint16_t *ptmp, *atmp;
size_t i, j, nmatch = 0;
for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp);
/* Skip disabled hashes or signature algorithms */
if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
continue;
for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
if (*ptmp == *atmp) {
nmatch++;
if (shsig)
*shsig++ = lu;
break;
}
}
}
return nmatch;
}
/* Set shared signature algorithms for SSL structures */
static int tls1_set_shared_sigalgs(SSL *s)
{
const uint16_t *pref, *allow, *conf;
size_t preflen, allowlen, conflen;
size_t nmatch;
const SIGALG_LOOKUP **salgs = NULL;
CERT *c = s->cert;
unsigned int is_suiteb = tls1_suiteb(s);
OPENSSL_free(c->shared_sigalgs);
c->shared_sigalgs = NULL;
c->shared_sigalgslen = 0;
/* If client use client signature algorithms if not NULL */
if (!s->server && c->client_sigalgs && !is_suiteb) {
conf = c->client_sigalgs;
conflen = c->client_sigalgslen;
} else if (c->conf_sigalgs && !is_suiteb) {
conf = c->conf_sigalgs;
conflen = c->conf_sigalgslen;
} else
conflen = tls12_get_psigalgs(s, 0, &conf);
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
pref = conf;
preflen = conflen;
allow = s->s3->tmp.peer_sigalgs;
allowlen = s->s3->tmp.peer_sigalgslen;
} else {
allow = conf;
allowlen = conflen;
pref = s->s3->tmp.peer_sigalgs;
preflen = s->s3->tmp.peer_sigalgslen;
}
nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
if (nmatch) {
salgs = OPENSSL_malloc(nmatch * sizeof(*salgs));
if (salgs == NULL)
return 0;
nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
} else {
salgs = NULL;
}
c->shared_sigalgs = salgs;
c->shared_sigalgslen = nmatch;
return 1;
}
/* Set preferred digest for each key type */
int tls1_save_sigalgs(SSL *s, PACKET *pkt)
{
CERT *c = s->cert;
unsigned int stmp;
size_t size, i;
/* Extension ignored for inappropriate versions */
if (!SSL_USE_SIGALGS(s))
return 1;
/* Should never happen */
if (!c)
return 0;
size = PACKET_remaining(pkt);
/* Invalid data length */
if (size == 0 || (size & 1) != 0)
return 0;
size >>= 1;
OPENSSL_free(s->s3->tmp.peer_sigalgs);
s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size
* sizeof(*s->s3->tmp.peer_sigalgs));
if (s->s3->tmp.peer_sigalgs == NULL)
return 0;
s->s3->tmp.peer_sigalgslen = size;
for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
s->s3->tmp.peer_sigalgs[i] = stmp;
if (i != size)
return 0;
return 1;
}
int tls1_process_sigalgs(SSL *s)
{
size_t i;
uint32_t *pvalid = s->s3->tmp.valid_flags;
CERT *c = s->cert;
if (!tls1_set_shared_sigalgs(s))
return 0;
for (i = 0; i < SSL_PKEY_NUM; i++)
pvalid[i] = 0;
for (i = 0; i < c->shared_sigalgslen; i++) {
const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i];
int idx = sigptr->sig_idx;
/* Ignore PKCS1 based sig algs in TLSv1.3 */
if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
continue;
/* If not disabled indicate we can explicitly sign */
if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx))
pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
}
return 1;
}
int SSL_get_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
uint16_t *psig = s->s3->tmp.peer_sigalgs;
size_t numsigalgs = s->s3->tmp.peer_sigalgslen;
if (psig == NULL || numsigalgs > INT_MAX)
return 0;
if (idx >= 0) {
const SIGALG_LOOKUP *lu;
if (idx >= (int)numsigalgs)
return 0;
psig += idx;
if (rhash != NULL)
*rhash = (unsigned char)((*psig >> 8) & 0xff);
if (rsig != NULL)
*rsig = (unsigned char)(*psig & 0xff);
lu = tls1_lookup_sigalg(*psig);
if (psign != NULL)
*psign = lu != NULL ? lu->sig : NID_undef;
if (phash != NULL)
*phash = lu != NULL ? lu->hash : NID_undef;
if (psignhash != NULL)
*psignhash = lu != NULL ? lu->sigandhash : NID_undef;
}
return (int)numsigalgs;
}
int SSL_get_shared_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)
{
const SIGALG_LOOKUP *shsigalgs;
if (s->cert->shared_sigalgs == NULL
|| idx < 0
|| idx >= (int)s->cert->shared_sigalgslen
|| s->cert->shared_sigalgslen > INT_MAX)
return 0;
shsigalgs = s->cert->shared_sigalgs[idx];
if (phash != NULL)
*phash = shsigalgs->hash;
if (psign != NULL)
*psign = shsigalgs->sig;
if (psignhash != NULL)
*psignhash = shsigalgs->sigandhash;
if (rsig != NULL)
*rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
if (rhash != NULL)
*rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
return (int)s->cert->shared_sigalgslen;
}
/* Maximum possible number of unique entries in sigalgs array */
#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
typedef struct {
size_t sigalgcnt;
int sigalgs[TLS_MAX_SIGALGCNT];
} sig_cb_st;
static void get_sigorhash(int *psig, int *phash, const char *str)
{
if (strcmp(str, "RSA") == 0) {
*psig = EVP_PKEY_RSA;
} else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
*psig = EVP_PKEY_RSA_PSS;
} else if (strcmp(str, "DSA") == 0) {
*psig = EVP_PKEY_DSA;
} else if (strcmp(str, "ECDSA") == 0) {
*psig = EVP_PKEY_EC;
} else {
*phash = OBJ_sn2nid(str);
if (*phash == NID_undef)
*phash = OBJ_ln2nid(str);
}
}
/* Maximum length of a signature algorithm string component */
#define TLS_MAX_SIGSTRING_LEN 40
static int sig_cb(const char *elem, int len, void *arg)
{
sig_cb_st *sarg = arg;
size_t i;
char etmp[TLS_MAX_SIGSTRING_LEN], *p;
int sig_alg = NID_undef, hash_alg = NID_undef;
if (elem == NULL)
return 0;
if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
return 0;
if (len > (int)(sizeof(etmp) - 1))
return 0;
memcpy(etmp, elem, len);
etmp[len] = 0;
p = strchr(etmp, '+');
/* See if we have a match for TLS 1.3 names */
if (p == NULL) {
const SIGALG_LOOKUP *s;
for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
i++, s++) {
if (s->name != NULL && strcmp(etmp, s->name) == 0) {
sig_alg = s->sig;
hash_alg = s->hash;
break;
}
}
} else {
*p = 0;
p++;
if (*p == 0)
return 0;
get_sigorhash(&sig_alg, &hash_alg, etmp);
get_sigorhash(&sig_alg, &hash_alg, p);
}
if (sig_alg == NID_undef || (p != NULL && hash_alg == NID_undef))
return 0;
for (i = 0; i < sarg->sigalgcnt; i += 2) {
if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg)
return 0;
}
sarg->sigalgs[sarg->sigalgcnt++] = hash_alg;
sarg->sigalgs[sarg->sigalgcnt++] = sig_alg;
return 1;
}
/*
* Set supported signature algorithms based on a colon separated list of the
* form sig+hash e.g. RSA+SHA512:DSA+SHA512
*/
int tls1_set_sigalgs_list(CERT *c, const char *str, int client)
{
sig_cb_st sig;
sig.sigalgcnt = 0;
if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
return 0;
if (c == NULL)
return 1;
return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
}
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
{
uint16_t *sigalgs, *sptr;
size_t i;
if (salglen & 1)
return 0;
sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs));
if (sigalgs == NULL)
return 0;
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
size_t j;
const SIGALG_LOOKUP *curr;
int md_id = *psig_nids++;
int sig_id = *psig_nids++;
for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
j++, curr++) {
if (curr->hash == md_id && curr->sig == sig_id) {
*sptr++ = curr->sigalg;
break;
}
}
if (j == OSSL_NELEM(sigalg_lookup_tbl))
goto err;
}
if (client) {
OPENSSL_free(c->client_sigalgs);
c->client_sigalgs = sigalgs;
c->client_sigalgslen = salglen / 2;
} else {
OPENSSL_free(c->conf_sigalgs);
c->conf_sigalgs = sigalgs;
c->conf_sigalgslen = salglen / 2;
}
return 1;
err:
OPENSSL_free(sigalgs);
return 0;
}
static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid)
{
int sig_nid;
size_t i;
if (default_nid == -1)
return 1;
sig_nid = X509_get_signature_nid(x);
if (default_nid)
return sig_nid == default_nid ? 1 : 0;
for (i = 0; i < c->shared_sigalgslen; i++)
if (sig_nid == c->shared_sigalgs[i]->sigandhash)
return 1;
return 0;
}
/* Check to see if a certificate issuer name matches list of CA names */
static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
{
X509_NAME *nm;
int i;
nm = X509_get_issuer_name(x);
for (i = 0; i < sk_X509_NAME_num(names); i++) {
if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
return 1;
}
return 0;
}
/*
* Check certificate chain is consistent with TLS extensions and is usable by
* server. This servers two purposes: it allows users to check chains before
* passing them to the server and it allows the server to check chains before
* attempting to use them.
*/
/* Flags which need to be set for a certificate when strict mode not set */
#define CERT_PKEY_VALID_FLAGS \
(CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
/* Strict mode flags */
#define CERT_PKEY_STRICT_FLAGS \
(CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
| CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain,
int idx)
{
int i;
int rv = 0;
int check_flags = 0, strict_mode;
CERT_PKEY *cpk = NULL;
CERT *c = s->cert;
uint32_t *pvalid;
unsigned int suiteb_flags = tls1_suiteb(s);
/* idx == -1 means checking server chains */
if (idx != -1) {
/* idx == -2 means checking client certificate chains */
if (idx == -2) {
cpk = c->key;
idx = (int)(cpk - c->pkeys);
} else
cpk = c->pkeys + idx;
pvalid = s->s3->tmp.valid_flags + idx;
x = cpk->x509;
pk = cpk->privatekey;
chain = cpk->chain;
strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
/* If no cert or key, forget it */
if (!x || !pk)
goto end;
} else {
size_t certidx;
if (!x || !pk)
return 0;
if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL)
return 0;
idx = certidx;
pvalid = s->s3->tmp.valid_flags + idx;
if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
check_flags = CERT_PKEY_STRICT_FLAGS;
else
check_flags = CERT_PKEY_VALID_FLAGS;
strict_mode = 1;
}
if (suiteb_flags) {
int ok;
if (check_flags)
check_flags |= CERT_PKEY_SUITEB;
ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
if (ok == X509_V_OK)
rv |= CERT_PKEY_SUITEB;
else if (!check_flags)
goto end;
}
/*
* Check all signature algorithms are consistent with signature
* algorithms extension if TLS 1.2 or later and strict mode.
*/
if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) {
int default_nid;
int rsign = 0;
if (s->s3->tmp.peer_sigalgs)
default_nid = 0;
/* If no sigalgs extension use defaults from RFC5246 */
else {
switch (idx) {
case SSL_PKEY_RSA:
rsign = EVP_PKEY_RSA;
default_nid = NID_sha1WithRSAEncryption;
break;
case SSL_PKEY_DSA_SIGN:
rsign = EVP_PKEY_DSA;
default_nid = NID_dsaWithSHA1;
break;
case SSL_PKEY_ECC:
rsign = EVP_PKEY_EC;
default_nid = NID_ecdsa_with_SHA1;
break;
case SSL_PKEY_GOST01:
rsign = NID_id_GostR3410_2001;
default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
break;
case SSL_PKEY_GOST12_256:
rsign = NID_id_GostR3410_2012_256;
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
break;
case SSL_PKEY_GOST12_512:
rsign = NID_id_GostR3410_2012_512;
default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
break;
default:
default_nid = -1;
break;
}
}
/*
* If peer sent no signature algorithms extension and we have set
* preferred signature algorithms check we support sha1.
*/
if (default_nid > 0 && c->conf_sigalgs) {
size_t j;
const uint16_t *p = c->conf_sigalgs;
for (j = 0; j < c->conf_sigalgslen; j++, p++) {
const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p);
if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
break;
}
if (j == c->conf_sigalgslen) {
if (check_flags)
goto skip_sigs;
else
goto end;
}
}
/* Check signature algorithm of each cert in chain */
if (!tls1_check_sig_alg(c, x, default_nid)) {
if (!check_flags)
goto end;
} else
rv |= CERT_PKEY_EE_SIGNATURE;
rv |= CERT_PKEY_CA_SIGNATURE;
for (i = 0; i < sk_X509_num(chain); i++) {
if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) {
if (check_flags) {
rv &= ~CERT_PKEY_CA_SIGNATURE;
break;
} else
goto end;
}
}
}
/* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
else if (check_flags)
rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
skip_sigs:
/* Check cert parameters are consistent */
if (tls1_check_cert_param(s, x, 1))
rv |= CERT_PKEY_EE_PARAM;
else if (!check_flags)
goto end;
if (!s->server)
rv |= CERT_PKEY_CA_PARAM;
/* In strict mode check rest of chain too */
else if (strict_mode) {
rv |= CERT_PKEY_CA_PARAM;
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *ca = sk_X509_value(chain, i);
if (!tls1_check_cert_param(s, ca, 0)) {
if (check_flags) {
rv &= ~CERT_PKEY_CA_PARAM;
break;
} else
goto end;
}
}
}
if (!s->server && strict_mode) {
STACK_OF(X509_NAME) *ca_dn;
int check_type = 0;
switch (EVP_PKEY_id(pk)) {
case EVP_PKEY_RSA:
check_type = TLS_CT_RSA_SIGN;
break;
case EVP_PKEY_DSA:
check_type = TLS_CT_DSS_SIGN;
break;
case EVP_PKEY_EC:
check_type = TLS_CT_ECDSA_SIGN;
break;
}
if (check_type) {
const uint8_t *ctypes = s->s3->tmp.ctype;
size_t j;
for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) {
if (*ctypes == check_type) {
rv |= CERT_PKEY_CERT_TYPE;
break;
}
}
if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
goto end;
} else {
rv |= CERT_PKEY_CERT_TYPE;
}
ca_dn = s->s3->tmp.peer_ca_names;
if (!sk_X509_NAME_num(ca_dn))
rv |= CERT_PKEY_ISSUER_NAME;
if (!(rv & CERT_PKEY_ISSUER_NAME)) {
if (ssl_check_ca_name(ca_dn, x))
rv |= CERT_PKEY_ISSUER_NAME;
}
if (!(rv & CERT_PKEY_ISSUER_NAME)) {
for (i = 0; i < sk_X509_num(chain); i++) {
X509 *xtmp = sk_X509_value(chain, i);
if (ssl_check_ca_name(ca_dn, xtmp)) {
rv |= CERT_PKEY_ISSUER_NAME;
break;
}
}
}
if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
goto end;
} else
rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
if (!check_flags || (rv & check_flags) == check_flags)
rv |= CERT_PKEY_VALID;
end:
if (TLS1_get_version(s) >= TLS1_2_VERSION)
rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
else
rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
/*
* When checking a CERT_PKEY structure all flags are irrelevant if the
* chain is invalid.
*/
if (!check_flags) {
if (rv & CERT_PKEY_VALID) {
*pvalid = rv;
} else {
/* Preserve sign and explicit sign flag, clear rest */
*pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
return 0;
}
}
return rv;
}
/* Set validity of certificates in an SSL structure */
void tls1_set_cert_validity(SSL *s)
{
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
}
/* User level utility function to check a chain is suitable */
int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
{
return tls1_check_chain(s, x, pk, chain, -1);
}
#ifndef OPENSSL_NO_DH
DH *ssl_get_auto_dh(SSL *s)
{
int dh_secbits = 80;
if (s->cert->dh_tmp_auto == 2)
return DH_get_1024_160();
if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
if (s->s3->tmp.new_cipher->strength_bits == 256)
dh_secbits = 128;
else
dh_secbits = 80;
} else {
if (s->s3->tmp.cert == NULL)
return NULL;
dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey);
}
if (dh_secbits >= 128) {
DH *dhp = DH_new();
BIGNUM *p, *g;
if (dhp == NULL)
return NULL;
g = BN_new();
if (g != NULL)
BN_set_word(g, 2);
if (dh_secbits >= 192)
p = BN_get_rfc3526_prime_8192(NULL);
else
p = BN_get_rfc3526_prime_3072(NULL);
if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) {
DH_free(dhp);
BN_free(p);
BN_free(g);
return NULL;
}
return dhp;
}
if (dh_secbits >= 112)
return DH_get_2048_224();
return DH_get_1024_160();
}
#endif
static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op)
{
int secbits = -1;
EVP_PKEY *pkey = X509_get0_pubkey(x);
if (pkey) {
/*
* If no parameters this will return -1 and fail using the default
* security callback for any non-zero security level. This will
* reject keys which omit parameters but this only affects DSA and
* omission of parameters is never (?) done in practice.
*/
secbits = EVP_PKEY_security_bits(pkey);
}
if (s)
return ssl_security(s, op, secbits, 0, x);
else
return ssl_ctx_security(ctx, op, secbits, 0, x);
}
static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op)
{
/* Lookup signature algorithm digest */
int secbits, nid, pknid;
/* Don't check signature if self signed */
if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
return 1;
if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
secbits = -1;
/* If digest NID not defined use signature NID */
if (nid == NID_undef)
nid = pknid;
if (s)
return ssl_security(s, op, secbits, nid, x);
else
return ssl_ctx_security(ctx, op, secbits, nid, x);
}
int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee)
{
if (vfy)
vfy = SSL_SECOP_PEER;
if (is_ee) {
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
return SSL_R_EE_KEY_TOO_SMALL;
} else {
if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
return SSL_R_CA_KEY_TOO_SMALL;
}
if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
return SSL_R_CA_MD_TOO_WEAK;
return 1;
}
/*
* Check security of a chain, if |sk| includes the end entity certificate then
* |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
* one to the peer. Return values: 1 if ok otherwise error code to use
*/
int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy)
{
int rv, start_idx, i;
if (x == NULL) {
x = sk_X509_value(sk, 0);
start_idx = 1;
} else
start_idx = 0;
rv = ssl_security_cert(s, NULL, x, vfy, 1);
if (rv != 1)
return rv;
for (i = start_idx; i < sk_X509_num(sk); i++) {
x = sk_X509_value(sk, i);
rv = ssl_security_cert(s, NULL, x, vfy, 0);
if (rv != 1)
return rv;
}
return 1;
}
/*
* For TLS 1.2 servers check if we have a certificate which can be used
* with the signature algorithm "lu".
*/
static int tls12_check_cert_sigalg(const SSL *s, const SIGALG_LOOKUP *lu)
{
const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(lu->sig_idx);
/* If not recognised or not supported by cipher mask it is not suitable */
if (clu == NULL || !(clu->amask & s->s3->tmp.new_cipher->algorithm_auth))
return 0;
return s->s3->tmp.valid_flags[lu->sig_idx] & CERT_PKEY_VALID ? 1 : 0;
}
/*
* Choose an appropriate signature algorithm based on available certificates
* Sets chosen certificate and signature algorithm.
*
* For servers if we fail to find a required certificate it is a fatal error
* and an appropriate error code is set and the TLS alert set in *al.
*
* For clients al is set to NULL. If a certificate is not suitable it is not
* a fatal error: we will either try another certificate or not present one
* to the server. In this case no error is set.
*/
int tls_choose_sigalg(SSL *s, int *al)
{
const SIGALG_LOOKUP *lu = NULL;
s->s3->tmp.cert = NULL;
s->s3->tmp.sigalg = NULL;
if (SSL_IS_TLS13(s)) {
size_t i;
#ifndef OPENSSL_NO_EC
int curve = -1, skip_ec = 0;
#endif
/* Look for a certificate matching shared sigalgs */
for (i = 0; i < s->cert->shared_sigalgslen; i++) {
lu = s->cert->shared_sigalgs[i];
/* Skip SHA1, SHA224, DSA and RSA if not PSS */
if (lu->hash == NID_sha1
|| lu->hash == NID_sha224
|| lu->sig == EVP_PKEY_DSA
|| lu->sig == EVP_PKEY_RSA)
continue;
if (!tls1_lookup_md(lu, NULL))
continue;
if (!ssl_has_cert(s, lu->sig_idx))
continue;
if (lu->sig == EVP_PKEY_EC) {
#ifndef OPENSSL_NO_EC
if (curve == -1) {
EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
if (EC_KEY_get_conv_form(ec)
!= POINT_CONVERSION_UNCOMPRESSED)
skip_ec = 1;
}
if (skip_ec || (lu->curve != NID_undef && curve != lu->curve))
continue;
#else
continue;
#endif
}
break;
}
if (i == s->cert->shared_sigalgslen) {
if (al == NULL)
return 1;
*al = SSL_AD_HANDSHAKE_FAILURE;
SSLerr(SSL_F_TLS_CHOOSE_SIGALG,
SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
return 0;
}
} else {
/* If ciphersuite doesn't require a cert nothing to do */
if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT))
return 1;
if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
return 1;
if (SSL_USE_SIGALGS(s)) {
if (s->s3->tmp.peer_sigalgs != NULL) {
size_t i;
#ifndef OPENSSL_NO_EC
int curve;
/* For Suite B need to match signature algorithm to curve */
if (tls1_suiteb(s)) {
EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey);
curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
} else {
curve = -1;
}
#endif
/*
* Find highest preference signature algorithm matching
* cert type
*/
for (i = 0; i < s->cert->shared_sigalgslen; i++) {
lu = s->cert->shared_sigalgs[i];
if (s->server) {
if (!tls12_check_cert_sigalg(s, lu))
continue;
} else if (lu->sig_idx != s->cert->key - s->cert->pkeys) {
continue;
}
#ifndef OPENSSL_NO_EC
if (curve == -1 || lu->curve == curve)
#endif
break;
}
if (i == s->cert->shared_sigalgslen) {
if (al == NULL)
return 1;
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
return 0;
}
} else {
/*
* If we have no sigalg use defaults
*/
const uint16_t *sent_sigs;
size_t sent_sigslen, i;
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
if (al == NULL)
return 1;
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
return 0;
}
/* Check signature matches a type we sent */
sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
if (lu->sigalg == *sent_sigs)
break;
}
if (i == sent_sigslen) {
if (al == NULL)
return 1;
SSLerr(SSL_F_TLS_CHOOSE_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE);
*al = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
}
} else {
if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
if (al == NULL)
return 1;
*al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_CHOOSE_SIGALG, ERR_R_INTERNAL_ERROR);
return 0;
}
}
}
s->s3->tmp.cert = &s->cert->pkeys[lu->sig_idx];
s->cert->key = s->s3->tmp.cert;
s->s3->tmp.sigalg = lu;
return 1;
}