2000-01-11 22:35:21 +00:00
|
|
|
=pod
|
|
|
|
|
|
|
|
=head1 NAME
|
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
RSA_generate_key_ex, RSA_generate_key - generate RSA key pair
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=head1 SYNOPSIS
|
|
|
|
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e, BN_GENCB *cb);
|
|
|
|
|
|
|
|
Deprecated:
|
|
|
|
|
2016-01-05 04:00:33 +00:00
|
|
|
#if OPENSSL_API_COMPAT < 0x00908000L
|
2000-01-11 22:35:21 +00:00
|
|
|
RSA *RSA_generate_key(int num, unsigned long e,
|
|
|
|
void (*callback)(int,int,void *), void *cb_arg);
|
2016-01-05 04:00:33 +00:00
|
|
|
#endif
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=head1 DESCRIPTION
|
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
RSA_generate_key_ex() generates a key pair and stores it in the B<RSA>
|
|
|
|
structure provided in B<rsa>. The pseudo-random number generator must
|
|
|
|
be seeded prior to calling RSA_generate_key_ex().
|
2000-01-11 22:35:21 +00:00
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
The modulus size will be of length B<bits>, and the public exponent will be
|
2000-01-11 22:35:21 +00:00
|
|
|
B<e>. Key sizes with B<num> E<lt> 1024 should be considered insecure.
|
2002-04-13 09:58:50 +00:00
|
|
|
The exponent is an odd number, typically 3, 17 or 65537.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
A callback function may be used to provide feedback about the
|
2013-06-12 22:42:08 +00:00
|
|
|
progress of the key generation. If B<cb> is not B<NULL>, it
|
|
|
|
will be called as follows using the BN_GENCB_call() function
|
2015-08-17 19:21:33 +00:00
|
|
|
described on the L<BN_generate_prime(3)> page.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=over 4
|
|
|
|
|
|
|
|
=item *
|
|
|
|
|
|
|
|
While a random prime number is generated, it is called as
|
2015-08-17 19:21:33 +00:00
|
|
|
described in L<BN_generate_prime(3)>.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=item *
|
|
|
|
|
|
|
|
When the n-th randomly generated prime is rejected as not
|
2013-06-12 22:42:08 +00:00
|
|
|
suitable for the key, B<BN_GENCB_call(cb, 2, n)> is called.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=item *
|
|
|
|
|
|
|
|
When a random p has been found with p-1 relatively prime to B<e>,
|
2013-06-12 22:42:08 +00:00
|
|
|
it is called as B<BN_GENCB_call(cb, 3, 0)>.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=back
|
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
The process is then repeated for prime q with B<BN_GENCB_call(cb, 3, 1)>.
|
|
|
|
|
|
|
|
RSA_generate_key is deprecated (new applications should use
|
|
|
|
RSA_generate_key_ex instead). RSA_generate_key works in the same was as
|
|
|
|
RSA_generate_key_ex except it uses "old style" call backs. See
|
2015-08-17 19:21:33 +00:00
|
|
|
L<BN_generate_prime(3)> for further details.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
2000-01-21 17:50:27 +00:00
|
|
|
=head1 RETURN VALUE
|
2000-01-11 22:35:21 +00:00
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
If key generation fails, RSA_generate_key() returns B<NULL>.
|
|
|
|
|
2015-08-17 19:21:33 +00:00
|
|
|
The error codes can be obtained by L<ERR_get_error(3)>.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=head1 BUGS
|
|
|
|
|
2013-06-12 22:42:08 +00:00
|
|
|
B<BN_GENCB_call(cb, 2, x)> is used with two different meanings.
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
RSA_generate_key() goes into an infinite loop for illegal input values.
|
|
|
|
|
|
|
|
=head1 SEE ALSO
|
|
|
|
|
2015-08-17 19:21:33 +00:00
|
|
|
L<ERR_get_error(3)>, L<rand(3)>, L<rsa(3)>,
|
|
|
|
L<RSA_free(3)>, L<BN_generate_prime(3)>
|
2000-01-11 22:35:21 +00:00
|
|
|
|
|
|
|
=cut
|