openssl/crypto/bn/bn_lib.c

967 lines
21 KiB
C
Raw Normal View History

/*
* Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
2000-12-03 09:55:08 +00:00
#include <limits.h>
#include "internal/cryptlib.h"
#include "bn_lcl.h"
#include <openssl/opensslconf.h>
#include "internal/constant_time_locl.h"
/* This stuff appears to be completely unused, so is deprecated */
#if OPENSSL_API_COMPAT < 0x00908000L
/*-
* For a 32 bit machine
* 2 - 4 == 128
* 3 - 8 == 256
* 4 - 16 == 512
* 5 - 32 == 1024
* 6 - 64 == 2048
* 7 - 128 == 4096
* 8 - 256 == 8192
*/
static int bn_limit_bits = 0;
static int bn_limit_num = 8; /* (1<<bn_limit_bits) */
static int bn_limit_bits_low = 0;
static int bn_limit_num_low = 8; /* (1<<bn_limit_bits_low) */
static int bn_limit_bits_high = 0;
static int bn_limit_num_high = 8; /* (1<<bn_limit_bits_high) */
static int bn_limit_bits_mont = 0;
static int bn_limit_num_mont = 8; /* (1<<bn_limit_bits_mont) */
1999-04-19 21:31:43 +00:00
void BN_set_params(int mult, int high, int low, int mont)
{
if (mult >= 0) {
if (mult > (int)(sizeof(int) * 8) - 1)
mult = sizeof(int) * 8 - 1;
bn_limit_bits = mult;
bn_limit_num = 1 << mult;
}
if (high >= 0) {
if (high > (int)(sizeof(int) * 8) - 1)
high = sizeof(int) * 8 - 1;
bn_limit_bits_high = high;
bn_limit_num_high = 1 << high;
}
if (low >= 0) {
if (low > (int)(sizeof(int) * 8) - 1)
low = sizeof(int) * 8 - 1;
bn_limit_bits_low = low;
bn_limit_num_low = 1 << low;
}
if (mont >= 0) {
if (mont > (int)(sizeof(int) * 8) - 1)
mont = sizeof(int) * 8 - 1;
bn_limit_bits_mont = mont;
bn_limit_num_mont = 1 << mont;
}
}
1999-04-19 21:31:43 +00:00
int BN_get_params(int which)
{
if (which == 0)
return bn_limit_bits;
else if (which == 1)
return bn_limit_bits_high;
else if (which == 2)
return bn_limit_bits_low;
else if (which == 3)
return bn_limit_bits_mont;
else
return 0;
}
#endif
2001-03-08 13:58:09 +00:00
const BIGNUM *BN_value_one(void)
{
static const BN_ULONG data_one = 1L;
static const BIGNUM const_one =
{ (BN_ULONG *)&data_one, 1, 1, 0, BN_FLG_STATIC_DATA };
return &const_one;
}
1999-04-19 21:31:43 +00:00
int BN_num_bits_word(BN_ULONG l)
{
BN_ULONG x, mask;
int bits = (l != 0);
#if BN_BITS2 > 32
x = l >> 32;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 32 & mask;
l ^= (x ^ l) & mask;
#endif
x = l >> 16;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 16 & mask;
l ^= (x ^ l) & mask;
x = l >> 8;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 8 & mask;
l ^= (x ^ l) & mask;
x = l >> 4;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 4 & mask;
l ^= (x ^ l) & mask;
x = l >> 2;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 2 & mask;
l ^= (x ^ l) & mask;
x = l >> 1;
mask = (0 - x) & BN_MASK2;
mask = (0 - (mask >> (BN_BITS2 - 1)));
bits += 1 & mask;
return bits;
}
int BN_num_bits(const BIGNUM *a)
{
int i = a->top - 1;
bn_check_top(a);
if (BN_is_zero(a))
return 0;
return ((i * BN_BITS2) + BN_num_bits_word(a->d[i]));
}
static void bn_free_d(BIGNUM *a)
{
if (BN_get_flags(a, BN_FLG_SECURE))
OPENSSL_secure_free(a->d);
else
OPENSSL_free(a->d);
}
1999-04-19 21:31:43 +00:00
void BN_clear_free(BIGNUM *a)
{
if (a == NULL)
return;
if (a->d != NULL && !BN_get_flags(a, BN_FLG_STATIC_DATA)) {
OPENSSL_cleanse(a->d, a->dmax * sizeof(a->d[0]));
bn_free_d(a);
}
if (BN_get_flags(a, BN_FLG_MALLOCED)) {
OPENSSL_cleanse(a, sizeof(*a));
OPENSSL_free(a);
}
}
1999-04-19 21:31:43 +00:00
void BN_free(BIGNUM *a)
{
if (a == NULL)
return;
if (!BN_get_flags(a, BN_FLG_STATIC_DATA))
bn_free_d(a);
if (a->flags & BN_FLG_MALLOCED)
OPENSSL_free(a);
}
void bn_init(BIGNUM *a)
{
static BIGNUM nilbn;
*a = nilbn;
bn_check_top(a);
}
1999-04-19 21:31:43 +00:00
BIGNUM *BN_new(void)
{
BIGNUM *ret;
if ((ret = OPENSSL_zalloc(sizeof(*ret))) == NULL) {
BNerr(BN_F_BN_NEW, ERR_R_MALLOC_FAILURE);
return NULL;
}
ret->flags = BN_FLG_MALLOCED;
bn_check_top(ret);
return ret;
}
BIGNUM *BN_secure_new(void)
{
BIGNUM *ret = BN_new();
if (ret != NULL)
ret->flags |= BN_FLG_SECURE;
return ret;
}
/* This is used by bn_expand2() */
/* The caller MUST check that words > b->dmax before calling this */
static BN_ULONG *bn_expand_internal(const BIGNUM *b, int words)
{
BN_ULONG *a = NULL;
if (words > (INT_MAX / (4 * BN_BITS2))) {
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_BIGNUM_TOO_LONG);
return NULL;
}
if (BN_get_flags(b, BN_FLG_STATIC_DATA)) {
BNerr(BN_F_BN_EXPAND_INTERNAL, BN_R_EXPAND_ON_STATIC_BIGNUM_DATA);
return NULL;
}
if (BN_get_flags(b, BN_FLG_SECURE))
a = OPENSSL_secure_zalloc(words * sizeof(*a));
else
a = OPENSSL_zalloc(words * sizeof(*a));
if (a == NULL) {
BNerr(BN_F_BN_EXPAND_INTERNAL, ERR_R_MALLOC_FAILURE);
return NULL;
}
assert(b->top <= words);
if (b->top > 0)
memcpy(a, b->d, sizeof(*a) * b->top);
return a;
}
/*
* This is an internal function that should not be used in applications. It
* ensures that 'b' has enough room for a 'words' word number and initialises
* any unused part of b->d with leading zeros. It is mostly used by the
* various BIGNUM routines. If there is an error, NULL is returned. If not,
* 'b' is returned.
*/
BIGNUM *bn_expand2(BIGNUM *b, int words)
{
if (words > b->dmax) {
BN_ULONG *a = bn_expand_internal(b, words);
if (!a)
return NULL;
if (b->d) {
OPENSSL_cleanse(b->d, b->dmax * sizeof(b->d[0]));
bn_free_d(b);
}
b->d = a;
b->dmax = words;
}
return b;
}
BIGNUM *BN_dup(const BIGNUM *a)
{
BIGNUM *t;
if (a == NULL)
return NULL;
bn_check_top(a);
t = BN_get_flags(a, BN_FLG_SECURE) ? BN_secure_new() : BN_new();
if (t == NULL)
return NULL;
if (!BN_copy(t, a)) {
BN_free(t);
return NULL;
}
bn_check_top(t);
return t;
}
BIGNUM *BN_copy(BIGNUM *a, const BIGNUM *b)
{
bn_check_top(b);
if (a == b)
return a;
if (bn_wexpand(a, b->top) == NULL)
return NULL;
if (b->top > 0)
memcpy(a->d, b->d, sizeof(b->d[0]) * b->top);
a->neg = b->neg;
a->top = b->top;
a->flags |= b->flags & BN_FLG_FIXED_TOP;
bn_check_top(a);
return a;
}
#define FLAGS_DATA(flags) ((flags) & (BN_FLG_STATIC_DATA \
| BN_FLG_CONSTTIME \
| BN_FLG_SECURE \
| BN_FLG_FIXED_TOP))
#define FLAGS_STRUCT(flags) ((flags) & (BN_FLG_MALLOCED))
2000-11-26 16:42:38 +00:00
void BN_swap(BIGNUM *a, BIGNUM *b)
{
int flags_old_a, flags_old_b;
BN_ULONG *tmp_d;
int tmp_top, tmp_dmax, tmp_neg;
bn_check_top(a);
bn_check_top(b);
flags_old_a = a->flags;
flags_old_b = b->flags;
tmp_d = a->d;
tmp_top = a->top;
tmp_dmax = a->dmax;
tmp_neg = a->neg;
a->d = b->d;
a->top = b->top;
a->dmax = b->dmax;
a->neg = b->neg;
b->d = tmp_d;
b->top = tmp_top;
b->dmax = tmp_dmax;
b->neg = tmp_neg;
a->flags = FLAGS_STRUCT(flags_old_a) | FLAGS_DATA(flags_old_b);
b->flags = FLAGS_STRUCT(flags_old_b) | FLAGS_DATA(flags_old_a);
bn_check_top(a);
bn_check_top(b);
}
2000-11-26 16:42:38 +00:00
1999-04-19 21:31:43 +00:00
void BN_clear(BIGNUM *a)
{
if (a == NULL)
return;
bn_check_top(a);
if (a->d != NULL)
OPENSSL_cleanse(a->d, sizeof(*a->d) * a->dmax);
a->neg = 0;
a->top = 0;
a->flags &= ~BN_FLG_FIXED_TOP;
}
BN_ULONG BN_get_word(const BIGNUM *a)
{
if (a->top > 1)
return BN_MASK2;
else if (a->top == 1)
return a->d[0];
/* a->top == 0 */
return 0;
}
int BN_set_word(BIGNUM *a, BN_ULONG w)
{
bn_check_top(a);
if (bn_expand(a, (int)sizeof(BN_ULONG) * 8) == NULL)
return 0;
a->neg = 0;
a->d[0] = w;
a->top = (w ? 1 : 0);
a->flags &= ~BN_FLG_FIXED_TOP;
bn_check_top(a);
return 1;
}
BIGNUM *BN_bin2bn(const unsigned char *s, int len, BIGNUM *ret)
{
unsigned int i, m;
unsigned int n;
BN_ULONG l;
BIGNUM *bn = NULL;
if (ret == NULL)
ret = bn = BN_new();
if (ret == NULL)
return NULL;
bn_check_top(ret);
/* Skip leading zero's. */
for ( ; len > 0 && *s == 0; s++, len--)
continue;
n = len;
if (n == 0) {
ret->top = 0;
return ret;
}
i = ((n - 1) / BN_BYTES) + 1;
m = ((n - 1) % (BN_BYTES));
if (bn_wexpand(ret, (int)i) == NULL) {
BN_free(bn);
return NULL;
}
ret->top = i;
ret->neg = 0;
l = 0;
while (n--) {
l = (l << 8L) | *(s++);
if (m-- == 0) {
ret->d[--i] = l;
l = 0;
m = BN_BYTES - 1;
}
}
/*
* need to call this due to clear byte at top if avoiding having the top
* bit set (-ve number)
*/
bn_correct_top(ret);
return ret;
}
/* ignore negative */
static int bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
{
int n;
size_t i, lasti, j, atop, mask;
BN_ULONG l;
/*
* In case |a| is fixed-top, BN_num_bytes can return bogus length,
* but it's assumed that fixed-top inputs ought to be "nominated"
* even for padded output, so it works out...
*/
n = BN_num_bytes(a);
if (tolen == -1) {
tolen = n;
} else if (tolen < n) { /* uncommon/unlike case */
BIGNUM temp = *a;
bn_correct_top(&temp);
n = BN_num_bytes(&temp);
if (tolen < n)
return -1;
}
/* Swipe through whole available data and don't give away padded zero. */
atop = a->dmax * BN_BYTES;
if (atop == 0) {
OPENSSL_cleanse(to, tolen);
return tolen;
}
lasti = atop - 1;
atop = a->top * BN_BYTES;
for (i = 0, j = 0, to += tolen; j < (size_t)tolen; j++) {
l = a->d[i / BN_BYTES];
mask = 0 - ((j - atop) >> (8 * sizeof(i) - 1));
*--to = (unsigned char)(l >> (8 * (i % BN_BYTES)) & mask);
i += (i - lasti) >> (8 * sizeof(i) - 1); /* stay on last limb */
}
return tolen;
}
int BN_bn2binpad(const BIGNUM *a, unsigned char *to, int tolen)
{
if (tolen < 0)
return -1;
return bn2binpad(a, to, tolen);
}
int BN_bn2bin(const BIGNUM *a, unsigned char *to)
{
return bn2binpad(a, to, -1);
}
BIGNUM *BN_lebin2bn(const unsigned char *s, int len, BIGNUM *ret)
{
unsigned int i, m;
unsigned int n;
BN_ULONG l;
BIGNUM *bn = NULL;
if (ret == NULL)
ret = bn = BN_new();
if (ret == NULL)
return NULL;
bn_check_top(ret);
s += len;
/* Skip trailing zeroes. */
for ( ; len > 0 && s[-1] == 0; s--, len--)
continue;
n = len;
if (n == 0) {
ret->top = 0;
return ret;
}
i = ((n - 1) / BN_BYTES) + 1;
m = ((n - 1) % (BN_BYTES));
if (bn_wexpand(ret, (int)i) == NULL) {
BN_free(bn);
return NULL;
}
ret->top = i;
ret->neg = 0;
l = 0;
while (n--) {
s--;
l = (l << 8L) | *s;
if (m-- == 0) {
ret->d[--i] = l;
l = 0;
m = BN_BYTES - 1;
}
}
/*
* need to call this due to clear byte at top if avoiding having the top
* bit set (-ve number)
*/
bn_correct_top(ret);
return ret;
}
int BN_bn2lebinpad(const BIGNUM *a, unsigned char *to, int tolen)
{
int i;
BN_ULONG l;
bn_check_top(a);
i = BN_num_bytes(a);
if (tolen < i)
return -1;
/* Add trailing zeroes if necessary */
if (tolen > i)
memset(to + i, 0, tolen - i);
to += i;
while (i--) {
l = a->d[i / BN_BYTES];
to--;
*to = (unsigned char)(l >> (8 * (i % BN_BYTES))) & 0xff;
}
return tolen;
}
int BN_ucmp(const BIGNUM *a, const BIGNUM *b)
{
int i;
BN_ULONG t1, t2, *ap, *bp;
bn_check_top(a);
bn_check_top(b);
i = a->top - b->top;
if (i != 0)
return i;
ap = a->d;
bp = b->d;
for (i = a->top - 1; i >= 0; i--) {
t1 = ap[i];
t2 = bp[i];
if (t1 != t2)
return ((t1 > t2) ? 1 : -1);
}
return 0;
}
int BN_cmp(const BIGNUM *a, const BIGNUM *b)
{
int i;
int gt, lt;
BN_ULONG t1, t2;
if ((a == NULL) || (b == NULL)) {
if (a != NULL)
return -1;
else if (b != NULL)
return 1;
else
return 0;
}
bn_check_top(a);
bn_check_top(b);
if (a->neg != b->neg) {
if (a->neg)
return -1;
else
return 1;
}
if (a->neg == 0) {
gt = 1;
lt = -1;
} else {
gt = -1;
lt = 1;
}
if (a->top > b->top)
return gt;
if (a->top < b->top)
return lt;
for (i = a->top - 1; i >= 0; i--) {
t1 = a->d[i];
t2 = b->d[i];
if (t1 > t2)
return gt;
if (t1 < t2)
return lt;
}
return 0;
}
1999-04-19 21:31:43 +00:00
int BN_set_bit(BIGNUM *a, int n)
{
int i, j, k;
if (n < 0)
return 0;
i = n / BN_BITS2;
j = n % BN_BITS2;
if (a->top <= i) {
if (bn_wexpand(a, i + 1) == NULL)
return 0;
for (k = a->top; k < i + 1; k++)
a->d[k] = 0;
a->top = i + 1;
a->flags &= ~BN_FLG_FIXED_TOP;
}
a->d[i] |= (((BN_ULONG)1) << j);
bn_check_top(a);
return 1;
}
1999-04-19 21:31:43 +00:00
int BN_clear_bit(BIGNUM *a, int n)
{
int i, j;
bn_check_top(a);
if (n < 0)
return 0;
i = n / BN_BITS2;
j = n % BN_BITS2;
if (a->top <= i)
return 0;
a->d[i] &= (~(((BN_ULONG)1) << j));
bn_correct_top(a);
return 1;
}
int BN_is_bit_set(const BIGNUM *a, int n)
{
int i, j;
bn_check_top(a);
if (n < 0)
return 0;
i = n / BN_BITS2;
j = n % BN_BITS2;
if (a->top <= i)
return 0;
return (int)(((a->d[i]) >> j) & ((BN_ULONG)1));
}
1999-04-19 21:31:43 +00:00
int BN_mask_bits(BIGNUM *a, int n)
{
int b, w;
bn_check_top(a);
if (n < 0)
return 0;
w = n / BN_BITS2;
b = n % BN_BITS2;
if (w >= a->top)
return 0;
if (b == 0)
a->top = w;
else {
a->top = w + 1;
a->d[w] &= ~(BN_MASK2 << b);
}
bn_correct_top(a);
return 1;
}
void BN_set_negative(BIGNUM *a, int b)
{
if (b && !BN_is_zero(a))
a->neg = 1;
else
a->neg = 0;
}
2000-11-16 22:43:32 +00:00
int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n)
{
int i;
BN_ULONG aa, bb;
Ensure bn_cmp_words can handle the case where n == 0 Thanks to David Benjamin who reported this, performed the analysis and suggested the patch. I have incorporated some of his analysis in the comments below. This issue can cause an out-of-bounds read. It is believed that this was not reachable until the recent "fixed top" changes. Analysis has so far only identified one code path that can encounter this - although it is possible that others may be found. The one code path only impacts 1.0.2 in certain builds. The fuzzer found a path in RSA where iqmp is too large. If the input is all zeros, the RSA CRT logic will multiply a padded zero by iqmp. Two mitigating factors: - Private keys which trip this are invalid (iqmp is not reduced mod p). Only systems which take untrusted private keys care. - In OpenSSL 1.1.x, there is a check which rejects the oversize iqmp, so the bug is only reproducible in 1.0.2 so far. Fortunately, the bug appears to be relatively harmless. The consequences of bn_cmp_word's misbehavior are: - OpenSSL may crash if the buffers are page-aligned and the previous page is non-existent. - OpenSSL will incorrectly treat two BN_ULONG buffers as not equal when they are equal. - Side channel concerns. The first is indeed a concern and is a DoS bug. The second is fine in this context. bn_cmp_word and bn_cmp_part_words are used to compute abs(a0 - a1) in Karatsuba. If a0 = a1, it does not matter whether we use a0 - a1 or a1 - a0. The third would be worth thinking about, but it is overshadowed by the entire Karatsuba implementation not being constant time. Due to the difficulty of tripping this and the low impact no CVE is felt necessary for this issue. Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Viktor Dukhovni <viktor@openssl.org> (Merged from https://github.com/openssl/openssl/pull/8326) (cherry picked from commit 576129cd72ae054d246221f111aabf42b9c6d76d)
2019-02-25 11:28:32 +00:00
if (n == 0)
return 0;
aa = a[n - 1];
bb = b[n - 1];
if (aa != bb)
return ((aa > bb) ? 1 : -1);
for (i = n - 2; i >= 0; i--) {
aa = a[i];
bb = b[i];
if (aa != bb)
return ((aa > bb) ? 1 : -1);
}
return 0;
}
/*
* Here follows a specialised variants of bn_cmp_words(). It has the
* capability of performing the operation on arrays of different sizes. The
* sizes of those arrays is expressed through cl, which is the common length
* ( basically, min(len(a),len(b)) ), and dl, which is the delta between the
* two lengths, calculated as len(a)-len(b). All lengths are the number of
* BN_ULONGs...
*/
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl)
{
int n, i;
n = cl - 1;
if (dl < 0) {
for (i = dl; i < 0; i++) {
if (b[n - i] != 0)
return -1; /* a < b */
}
}
if (dl > 0) {
for (i = dl; i > 0; i--) {
if (a[n + i] != 0)
return 1; /* a > b */
}
}
return bn_cmp_words(a, b, cl);
}
/*-
* Constant-time conditional swap of a and b.
* a and b are swapped if condition is not 0.
* nwords is the number of words to swap.
* Assumes that at least nwords are allocated in both a and b.
* Assumes that no more than nwords are used by either a or b.
*/
void BN_consttime_swap(BN_ULONG condition, BIGNUM *a, BIGNUM *b, int nwords)
{
BN_ULONG t;
int i;
if (a == b)
return;
bn_wcheck_size(a, nwords);
bn_wcheck_size(b, nwords);
condition = ((~condition & ((condition - 1))) >> (BN_BITS2 - 1)) - 1;
t = (a->top ^ b->top) & condition;
a->top ^= t;
b->top ^= t;
t = (a->neg ^ b->neg) & condition;
a->neg ^= t;
b->neg ^= t;
/*-
* BN_FLG_STATIC_DATA: indicates that data may not be written to. Intention
* is actually to treat it as it's read-only data, and some (if not most)
* of it does reside in read-only segment. In other words observation of
* BN_FLG_STATIC_DATA in BN_consttime_swap should be treated as fatal
* condition. It would either cause SEGV or effectively cause data
* corruption.
*
* BN_FLG_MALLOCED: refers to BN structure itself, and hence must be
* preserved.
*
* BN_FLG_SECURE: must be preserved, because it determines how x->d was
* allocated and hence how to free it.
*
* BN_FLG_CONSTTIME: sufficient to mask and swap
*
* BN_FLG_FIXED_TOP: indicates that we haven't called bn_correct_top() on
* the data, so the d array may be padded with additional 0 values (i.e.
* top could be greater than the minimal value that it could be). We should
* be swapping it
*/
#define BN_CONSTTIME_SWAP_FLAGS (BN_FLG_CONSTTIME | BN_FLG_FIXED_TOP)
t = ((a->flags ^ b->flags) & BN_CONSTTIME_SWAP_FLAGS) & condition;
a->flags ^= t;
b->flags ^= t;
/* conditionally swap the data */
for (i = 0; i < nwords; i++) {
t = (a->d[i] ^ b->d[i]) & condition;
a->d[i] ^= t;
b->d[i] ^= t;
}
}
#undef BN_CONSTTIME_SWAP_FLAGS
/* Bits of security, see SP800-57 */
int BN_security_bits(int L, int N)
{
int secbits, bits;
if (L >= 15360)
secbits = 256;
else if (L >= 7680)
secbits = 192;
else if (L >= 3072)
secbits = 128;
else if (L >= 2048)
secbits = 112;
else if (L >= 1024)
secbits = 80;
else
return 0;
if (N == -1)
return secbits;
bits = N / 2;
if (bits < 80)
return 0;
return bits >= secbits ? secbits : bits;
}
void BN_zero_ex(BIGNUM *a)
{
a->neg = 0;
a->top = 0;
a->flags &= ~BN_FLG_FIXED_TOP;
}
int BN_abs_is_word(const BIGNUM *a, const BN_ULONG w)
{
return ((a->top == 1) && (a->d[0] == w)) || ((w == 0) && (a->top == 0));
}
int BN_is_zero(const BIGNUM *a)
{
return a->top == 0;
}
int BN_is_one(const BIGNUM *a)
{
return BN_abs_is_word(a, 1) && !a->neg;
}
int BN_is_word(const BIGNUM *a, const BN_ULONG w)
{
return BN_abs_is_word(a, w) && (!w || !a->neg);
}
int BN_is_odd(const BIGNUM *a)
{
return (a->top > 0) && (a->d[0] & 1);
}
int BN_is_negative(const BIGNUM *a)
{
return (a->neg != 0);
}
int BN_to_montgomery(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
BN_CTX *ctx)
{
return BN_mod_mul_montgomery(r, a, &(mont->RR), mont, ctx);
}
void BN_with_flags(BIGNUM *dest, const BIGNUM *b, int flags)
{
dest->d = b->d;
dest->top = b->top;
dest->dmax = b->dmax;
dest->neg = b->neg;
dest->flags = ((dest->flags & BN_FLG_MALLOCED)
| (b->flags & ~BN_FLG_MALLOCED)
| BN_FLG_STATIC_DATA | flags);
}
BN_GENCB *BN_GENCB_new(void)
{
BN_GENCB *ret;
if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
BNerr(BN_F_BN_GENCB_NEW, ERR_R_MALLOC_FAILURE);
return NULL;
}
return ret;
}
void BN_GENCB_free(BN_GENCB *cb)
{
if (cb == NULL)
return;
OPENSSL_free(cb);
}
void BN_set_flags(BIGNUM *b, int n)
{
b->flags |= n;
}
int BN_get_flags(const BIGNUM *b, int n)
{
return b->flags & n;
}
/* Populate a BN_GENCB structure with an "old"-style callback */
void BN_GENCB_set_old(BN_GENCB *gencb, void (*callback) (int, int, void *),
void *cb_arg)
{
BN_GENCB *tmp_gencb = gencb;
tmp_gencb->ver = 1;
tmp_gencb->arg = cb_arg;
tmp_gencb->cb.cb_1 = callback;
}
/* Populate a BN_GENCB structure with a "new"-style callback */
void BN_GENCB_set(BN_GENCB *gencb, int (*callback) (int, int, BN_GENCB *),
void *cb_arg)
{
BN_GENCB *tmp_gencb = gencb;
tmp_gencb->ver = 2;
tmp_gencb->arg = cb_arg;
tmp_gencb->cb.cb_2 = callback;
}
void *BN_GENCB_get_arg(BN_GENCB *cb)
{
return cb->arg;
}
BIGNUM *bn_wexpand(BIGNUM *a, int words)
{
return (words <= a->dmax) ? a : bn_expand2(a, words);
}
void bn_correct_top(BIGNUM *a)
{
BN_ULONG *ftl;
int tmp_top = a->top;
if (tmp_top > 0) {
for (ftl = &(a->d[tmp_top]); tmp_top > 0; tmp_top--) {
ftl--;
if (*ftl != 0)
break;
}
a->top = tmp_top;
}
if (a->top == 0)
a->neg = 0;
a->flags &= ~BN_FLG_FIXED_TOP;
bn_pollute(a);
}