openssl/crypto/rsa/rsa_x931g.c

199 lines
4.7 KiB
C
Raw Normal View History

/*
* Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <openssl/err.h>
#include <openssl/bn.h>
#include "rsa_local.h"
/* X9.31 RSA key derivation and generation */
int RSA_X931_derive_ex(RSA *rsa, BIGNUM *p1, BIGNUM *p2, BIGNUM *q1,
BIGNUM *q2, const BIGNUM *Xp1, const BIGNUM *Xp2,
const BIGNUM *Xp, const BIGNUM *Xq1, const BIGNUM *Xq2,
const BIGNUM *Xq, const BIGNUM *e, BN_GENCB *cb)
{
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *r3 = NULL;
BN_CTX *ctx = NULL, *ctx2 = NULL;
int ret = 0;
if (!rsa)
goto err;
ctx = BN_CTX_new();
if (ctx == NULL)
goto err;
BN_CTX_start(ctx);
r0 = BN_CTX_get(ctx);
r1 = BN_CTX_get(ctx);
r2 = BN_CTX_get(ctx);
r3 = BN_CTX_get(ctx);
if (r3 == NULL)
goto err;
if (!rsa->e) {
rsa->e = BN_dup(e);
if (!rsa->e)
goto err;
} else {
e = rsa->e;
}
/*
* If not all parameters present only calculate what we can. This allows
* test programs to output selective parameters.
*/
if (Xp && rsa->p == NULL) {
rsa->p = BN_new();
if (rsa->p == NULL)
goto err;
if (!BN_X931_derive_prime_ex(rsa->p, p1, p2,
Xp, Xp1, Xp2, e, ctx, cb))
goto err;
}
if (Xq && rsa->q == NULL) {
rsa->q = BN_new();
if (rsa->q == NULL)
goto err;
if (!BN_X931_derive_prime_ex(rsa->q, q1, q2,
Xq, Xq1, Xq2, e, ctx, cb))
goto err;
}
if (rsa->p == NULL || rsa->q == NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
return 2;
}
/*
* Since both primes are set we can now calculate all remaining
* components.
*/
/* calculate n */
rsa->n = BN_new();
if (rsa->n == NULL)
goto err;
if (!BN_mul(rsa->n, rsa->p, rsa->q, ctx))
goto err;
/* calculate d */
if (!BN_sub(r1, rsa->p, BN_value_one()))
goto err; /* p-1 */
if (!BN_sub(r2, rsa->q, BN_value_one()))
goto err; /* q-1 */
if (!BN_mul(r0, r1, r2, ctx))
goto err; /* (p-1)(q-1) */
if (!BN_gcd(r3, r1, r2, ctx))
goto err;
if (!BN_div(r0, NULL, r0, r3, ctx))
goto err; /* LCM((p-1)(q-1)) */
ctx2 = BN_CTX_new();
if (ctx2 == NULL)
goto err;
rsa->d = BN_mod_inverse(NULL, rsa->e, r0, ctx2); /* d */
if (rsa->d == NULL)
goto err;
/* calculate d mod (p-1) */
rsa->dmp1 = BN_new();
if (rsa->dmp1 == NULL)
goto err;
if (!BN_mod(rsa->dmp1, rsa->d, r1, ctx))
goto err;
/* calculate d mod (q-1) */
rsa->dmq1 = BN_new();
if (rsa->dmq1 == NULL)
goto err;
if (!BN_mod(rsa->dmq1, rsa->d, r2, ctx))
goto err;
/* calculate inverse of q mod p */
rsa->iqmp = BN_mod_inverse(NULL, rsa->q, rsa->p, ctx2);
if (rsa->iqmp == NULL)
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
BN_CTX_free(ctx2);
return ret;
}
int RSA_X931_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e,
BN_GENCB *cb)
{
int ok = 0;
BIGNUM *Xp = NULL, *Xq = NULL;
BN_CTX *ctx = NULL;
ctx = BN_CTX_new();
if (ctx == NULL)
goto error;
BN_CTX_start(ctx);
Xp = BN_CTX_get(ctx);
Xq = BN_CTX_get(ctx);
if (Xq == NULL)
goto error;
if (!BN_X931_generate_Xpq(Xp, Xq, bits, ctx))
goto error;
rsa->p = BN_new();
rsa->q = BN_new();
if (rsa->p == NULL || rsa->q == NULL)
goto error;
/* Generate two primes from Xp, Xq */
if (!BN_X931_generate_prime_ex(rsa->p, NULL, NULL, NULL, NULL, Xp,
e, ctx, cb))
goto error;
if (!BN_X931_generate_prime_ex(rsa->q, NULL, NULL, NULL, NULL, Xq,
e, ctx, cb))
goto error;
/*
* Since rsa->p and rsa->q are valid this call will just derive remaining
* RSA components.
*/
if (!RSA_X931_derive_ex(rsa, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, e, cb))
goto error;
ok = 1;
error:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
if (ok)
return 1;
return 0;
}