openssl/crypto/bn/asm/s390x-gf2m.pl

229 lines
5.3 KiB
Perl
Raw Normal View History

#! /usr/bin/env perl
# Copyright 2011-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License"). You may not use
# this file except in compliance with the License. You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# May 2011
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
# the time being... gcc 4.3 appeared to generate poor code, therefore
# the effort. And indeed, the module delivers 55%-90%(*) improvement
# on heaviest ECDSA verify and ECDH benchmarks for 163- and 571-bit
# key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196.
# This is for 64-bit build. In 32-bit "highgprs" case improvement is
# even higher, for example on z990 it was measured 80%-150%. ECDSA
# sign is modest 9%-12% faster. Keep in mind that these coefficients
# are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is
# burnt in it...
#
# (*) gcc 4.1 was observed to deliver better results than gcc 4.3,
# so that improvement coefficients can vary from one specific
# setup to another.
$flavour = shift;
if ($flavour =~ /3[12]/) {
$SIZE_T=4;
$g="";
} else {
$SIZE_T=8;
$g="g";
}
while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
open STDOUT,">$output";
$stdframe=16*$SIZE_T+4*8;
$rp="%r2";
$a1="%r3";
$a0="%r4";
$b1="%r5";
$b0="%r6";
$ra="%r14";
$sp="%r15";
@T=("%r0","%r1");
@i=("%r12","%r13");
($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11));
($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8;
$code.=<<___;
.text
.type _mul_1x1,\@function
.align 16
_mul_1x1:
lgr $a1,$a
sllg $a2,$a,1
sllg $a4,$a,2
sllg $a8,$a,3
srag $lo,$a1,63 # broadcast 63rd bit
nihh $a1,0x1fff
srag @i[0],$a2,63 # broadcast 62nd bit
nihh $a2,0x3fff
srag @i[1],$a4,63 # broadcast 61st bit
nihh $a4,0x7fff
ngr $lo,$b
ngr @i[0],$b
ngr @i[1],$b
lghi @T[0],0
lgr $a12,$a1
stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0
xgr $a12,$a2
stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1
lgr $a48,$a4
stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2
xgr $a48,$a8
stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2
xgr $a1,$a4
stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4
xgr $a2,$a4
stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4
xgr $a12,$a4
stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4
xgr $a1,$a48
stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4
xgr $a2,$a48
stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8
xgr $a12,$a48
stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8
xgr $a1,$a4
stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8
xgr $a2,$a4
stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8
xgr $a12,$a4
stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8
srlg $hi,$lo,1
stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8
sllg $lo,$lo,63
stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8
srlg @T[0],@i[0],2
stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8
lghi $mask,`0xf<<3`
sllg $a1,@i[0],62
sllg @i[0],$b,3
srlg @T[1],@i[1],3
ngr @i[0],$mask
sllg $a2,@i[1],61
srlg @i[1],$b,4-3
xgr $hi,@T[0]
ngr @i[1],$mask
xgr $lo,$a1
xgr $hi,@T[1]
xgr $lo,$a2
xg $lo,$stdframe(@i[0],$sp)
srlg @i[0],$b,8-3
ngr @i[0],$mask
___
for($n=1;$n<14;$n++) {
$code.=<<___;
lg @T[1],$stdframe(@i[1],$sp)
srlg @i[1],$b,`($n+2)*4`-3
sllg @T[0],@T[1],`$n*4`
ngr @i[1],$mask
srlg @T[1],@T[1],`64-$n*4`
xgr $lo,@T[0]
xgr $hi,@T[1]
___
push(@i,shift(@i)); push(@T,shift(@T));
}
$code.=<<___;
lg @T[1],$stdframe(@i[1],$sp)
sllg @T[0],@T[1],`$n*4`
srlg @T[1],@T[1],`64-$n*4`
xgr $lo,@T[0]
xgr $hi,@T[1]
lg @T[0],$stdframe(@i[0],$sp)
sllg @T[1],@T[0],`($n+1)*4`
srlg @T[0],@T[0],`64-($n+1)*4`
xgr $lo,@T[1]
xgr $hi,@T[0]
br $ra
.size _mul_1x1,.-_mul_1x1
.globl bn_GF2m_mul_2x2
.type bn_GF2m_mul_2x2,\@function
.align 16
bn_GF2m_mul_2x2:
stm${g} %r3,%r15,3*$SIZE_T($sp)
lghi %r1,-$stdframe-128
la %r0,0($sp)
la $sp,0(%r1,$sp) # alloca
st${g} %r0,0($sp) # back chain
___
if ($SIZE_T==8) {
my @r=map("%r$_",(6..9));
$code.=<<___;
bras $ra,_mul_1x1 # a1·b1
stmg $lo,$hi,16($rp)
lg $a,`$stdframe+128+4*$SIZE_T`($sp)
lg $b,`$stdframe+128+6*$SIZE_T`($sp)
bras $ra,_mul_1x1 # a0·b0
stmg $lo,$hi,0($rp)
lg $a,`$stdframe+128+3*$SIZE_T`($sp)
lg $b,`$stdframe+128+5*$SIZE_T`($sp)
xg $a,`$stdframe+128+4*$SIZE_T`($sp)
xg $b,`$stdframe+128+6*$SIZE_T`($sp)
bras $ra,_mul_1x1 # (a0+a1)·(b0+b1)
lmg @r[0],@r[3],0($rp)
xgr $lo,$hi
xgr $hi,@r[1]
xgr $lo,@r[0]
xgr $hi,@r[2]
xgr $lo,@r[3]
xgr $hi,@r[3]
xgr $lo,$hi
stg $hi,16($rp)
stg $lo,8($rp)
___
} else {
$code.=<<___;
sllg %r3,%r3,32
sllg %r5,%r5,32
or %r3,%r4
or %r5,%r6
bras $ra,_mul_1x1
rllg $lo,$lo,32
rllg $hi,$hi,32
stmg $lo,$hi,0($rp)
___
}
$code.=<<___;
lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp)
br $ra
.size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2
.string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>"
___
$code =~ s/\`([^\`]*)\`/eval($1)/gem;
print $code;
close STDOUT;