openssl/test/evp_test.c

2142 lines
56 KiB
C
Raw Normal View History

2001-08-18 13:53:01 +00:00
/*
* Copyright 2015-2017 The OpenSSL Project Authors. All Rights Reserved.
2001-08-18 13:53:01 +00:00
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
2001-08-18 13:53:01 +00:00
*/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
2001-08-18 13:53:01 +00:00
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#include <openssl/x509v3.h>
#include <openssl/pkcs12.h>
#include <openssl/kdf.h>
#include "internal/numbers.h"
#include "testutil.h"
2001-08-18 13:53:01 +00:00
/*
* Remove spaces from beginning and end of a string
*/
static void remove_space(char **pval)
{
unsigned char *p = (unsigned char *)*pval, *beginning;
while (isspace(*p))
p++;
*pval = (char *)(beginning = p);
p = p + strlen(*pval) - 1;
/* Remove trailing space */
while (p >= beginning && isspace(*p))
*p-- = 0;
}
2001-08-18 13:53:01 +00:00
/*
* Given a line of the form:
* name = value # comment
* extract name and value. NB: modifies |linebuf|.
*/
static int parse_line(char **pkw, char **pval, char *linebuf)
{
char *p = linebuf + strlen(linebuf) - 1;
if (*p != '\n') {
TEST_error("FATAL: missing EOL");
return 0;
2001-08-18 13:53:01 +00:00
}
/* Look for # */
p = strchr(linebuf, '#');
if (p != NULL)
*p = '\0';
/* Look for = sign */
if ((p = strchr(linebuf, '=')) == NULL)
return 0;
*p++ = '\0';
*pkw = linebuf;
*pval = p;
remove_space(pkw);
remove_space(pval);
return 1;
}
2001-08-18 13:53:01 +00:00
/*
* Unescape some escape sequences in string literals.
* Return the result in a newly allocated buffer.
* Currently only supports '\n'.
* If the input length is 0, returns a valid 1-byte buffer, but sets
* the length to 0.
*/
static unsigned char* unescape(const char *input, size_t input_len,
size_t *out_len)
{
unsigned char *ret, *p;
size_t i;
if (input_len == 0) {
*out_len = 0;
return OPENSSL_zalloc(1);
}
/* Escaping is non-expanding; over-allocate original size for simplicity. */
ret = p = OPENSSL_malloc(input_len);
if (ret == NULL)
return NULL;
for (i = 0; i < input_len; i++) {
if (input[i] == '\\') {
if (i == input_len - 1 || input[i+1] != 'n')
goto err;
*p++ = '\n';
i++;
} else {
*p++ = input[i];
}
}
*out_len = p - ret;
return ret;
err:
OPENSSL_free(ret);
return NULL;
}
/* For a hex string "value" convert to a binary allocated buffer */
static int test_bin(const char *value, unsigned char **buf, size_t *buflen)
{
long len;
*buflen = 0;
/* Check for empty value */
if (!*value) {
/*
* Don't return NULL for zero length buffer.
* This is needed for some tests with empty keys: HMAC_Init_ex() expects
* a non-NULL key buffer even if the key length is 0, in order to detect
* key reset.
*/
*buf = OPENSSL_malloc(1);
if (!*buf)
return 0;
**buf = 0;
*buflen = 0;
return 1;
}
/* Check for NULL literal */
if (strcmp(value, "NULL") == 0) {
*buf = NULL;
*buflen = 0;
return 1;
}
/* Check for string literal */
if (value[0] == '"') {
size_t vlen;
value++;
vlen = strlen(value);
if (value[vlen - 1] != '"')
return 0;
vlen--;
*buf = unescape(value, vlen, buflen);
if (*buf == NULL)
return 0;
return 1;
}
/* Otherwise assume as hex literal and convert it to binary buffer */
if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) {
TEST_info("Cannot convert %s", value);
ERR_print_errors(bio_err);
return -1;
}
/* Size of input buffer means we'll never overflow */
*buflen = len;
return 1;
}
#ifndef OPENSSL_NO_SCRYPT
/* Currently only used by scrypt tests */
/* Parse unsigned decimal 64 bit integer value */
static int test_uint64(const char *value, uint64_t *pr)
{
const char *p = value;
if (!TEST_true(*p)) {
TEST_info("Invalid empty integer value");
return -1;
}
*pr = 0;
while (*p) {
if (*pr > UINT64_MAX / 10) {
TEST_error("Integer overflow in string %s", value);
return -1;
}
*pr *= 10;
if (!TEST_true(isdigit(*p))) {
TEST_error("Invalid character in string %s", value);
return -1;
}
*pr += *p - '0';
p++;
}
return 1;
}
#endif
typedef struct evp_test_method_st EVP_TEST_METHOD;
/* Structure holding test information */
typedef struct evp_test_st {
/* file being read */
BIO *in;
/* temp memory BIO for reading in keys */
BIO *key;
/* method for this test */
const EVP_TEST_METHOD *meth;
/* current line being processed */
unsigned int line;
/* start line of current test */
unsigned int start_line;
/* Error string for test */
const char *err, *aux_err;
/* Expected error value of test */
char *expected_err;
/* Expected error function string */
char *func;
/* Expected error reason string */
char *reason;
/* Number of tests */
int ntests;
/* Error count */
int errors;
/* Number of tests skipped */
int nskip;
/* If output mismatch expected and got value */
unsigned char *out_received;
size_t out_received_len;
unsigned char *out_expected;
size_t out_expected_len;
/* test specific data */
void *data;
/* Current test should be skipped */
int skip;
} EVP_TEST;
/*
* Linked list of named keys.
*/
typedef struct key_list_st {
char *name;
EVP_PKEY *key;
struct key_list_st *next;
} KEY_LIST;
/* List of public and private keys */
static KEY_LIST *private_keys;
static KEY_LIST *public_keys;
/*
* Test method structure
*/
struct evp_test_method_st {
/* Name of test as it appears in file */
const char *name;
/* Initialise test for "alg" */
int (*init) (EVP_TEST * t, const char *alg);
/* Clean up method */
void (*cleanup) (EVP_TEST * t);
/* Test specific name value pair processing */
int (*parse) (EVP_TEST * t, const char *name, const char *value);
/* Run the test itself */
int (*run_test) (EVP_TEST * t);
};
static const EVP_TEST_METHOD digest_test_method, cipher_test_method;
static const EVP_TEST_METHOD mac_test_method;
static const EVP_TEST_METHOD psign_test_method, pverify_test_method;
static const EVP_TEST_METHOD pdecrypt_test_method;
static const EVP_TEST_METHOD pverify_recover_test_method;
static const EVP_TEST_METHOD pderive_test_method;
static const EVP_TEST_METHOD pbe_test_method;
static const EVP_TEST_METHOD encode_test_method;
static const EVP_TEST_METHOD kdf_test_method;
static const EVP_TEST_METHOD keypair_test_method;
static const EVP_TEST_METHOD *evp_test_list[] = {
&digest_test_method,
&cipher_test_method,
&mac_test_method,
&psign_test_method,
&pverify_test_method,
&pdecrypt_test_method,
&pverify_recover_test_method,
&pderive_test_method,
&pbe_test_method,
&encode_test_method,
&kdf_test_method,
&keypair_test_method,
NULL
};
static const EVP_TEST_METHOD *evp_find_test(const char *name)
{
const EVP_TEST_METHOD **tt;
for (tt = evp_test_list; *tt; tt++) {
if (strcmp(name, (*tt)->name) == 0)
return *tt;
}
return NULL;
}
static void hex_print(const char *name, const unsigned char *buf, size_t len)
{
size_t i;
fprintf(stderr, "%s ", name);
for (i = 0; i < len; i++)
fprintf(stderr, "%02X", buf[i]);
fputs("\n", stderr);
}
static void clear_test(EVP_TEST *t)
{
OPENSSL_free(t->expected_err);
t->expected_err = NULL;
OPENSSL_free(t->func);
t->func = NULL;
OPENSSL_free(t->reason);
t->reason = NULL;
OPENSSL_free(t->out_expected);
t->out_expected = NULL;
t->out_expected_len = 0;
OPENSSL_free(t->out_received);
t->out_received = NULL;
t->out_received_len = 0;
/* Literals. */
t->err = NULL;
}
static void print_expected(EVP_TEST *t)
{
if (t->out_expected == NULL && t->out_received == NULL)
return;
hex_print("Expected:", t->out_expected, t->out_expected_len);
hex_print("Got: ", t->out_received, t->out_received_len);
clear_test(t);
}
/*
* Check for errors in the test structure; return 1 if okay, else 0.
*/
static int check_test_error(EVP_TEST *t)
{
unsigned long err;
const char *func;
const char *reason;
if (t->err == NULL && t->expected_err == NULL)
return 1;
if (t->err != NULL && t->expected_err == NULL) {
if (t->aux_err != NULL) {
TEST_info("Test line %d(%s): unexpected error %s",
t->start_line, t->aux_err, t->err);
} else {
TEST_info("Test line %d: unexpected error %s",
t->start_line, t->err);
}
print_expected(t);
return 0;
}
if (t->err == NULL && t->expected_err != NULL) {
TEST_info("Test line %d: succeeded expecting %s",
t->start_line, t->expected_err);
return 0;
}
if (strcmp(t->err, t->expected_err) != 0) {
TEST_info("Test line %d: expecting %s got %s",
t->start_line, t->expected_err, t->err);
return 0;
}
if (t->func == NULL && t->reason == NULL)
return 1;
if (t->func == NULL || t->reason == NULL) {
TEST_info("Test line %d: missing function or reason code",
t->start_line);
return 0;
}
err = ERR_peek_error();
if (err == 0) {
TEST_info("Test line %d, expected error \"%s:%s\" not set",
t->start_line, t->func, t->reason);
return 0;
}
func = ERR_func_error_string(err);
reason = ERR_reason_error_string(err);
if (func == NULL && reason == NULL) {
TEST_info("Test line %d: expected error \"%s:%s\","
" no strings available. Skipping...\n",
t->start_line, t->func, t->reason);
return 1;
}
if (strcmp(func, t->func) == 0 && strcmp(reason, t->reason) == 0)
return 1;
TEST_info("Test line %d: expected error \"%s:%s\", got \"%s:%s\"",
t->start_line, t->func, t->reason, func, reason);
return 0;
}
/*
* Setup a new test, run any existing test. Log a message and return 0
* on error.
*/
static int run_and_get_next(EVP_TEST *t, const EVP_TEST_METHOD *tmeth)
{
/* If we already have a test set up run it */
if (t->meth) {
t->ntests++;
if (t->skip) {
/*TEST_info("Line %d skipped %s test", t->start_line, t->meth->name);
*/
t->nskip++;
} else {
/* run the test */
if (t->err == NULL && t->meth->run_test(t) != 1) {
TEST_info("Line %d error %s", t->start_line, t->meth->name);
return 0;
}
if (!check_test_error(t)) {
test_openssl_errors();
t->errors++;
}
}
/* clean it up */
ERR_clear_error();
if (t->data != NULL) {
t->meth->cleanup(t);
OPENSSL_free(t->data);
t->data = NULL;
}
clear_test(t);
}
t->meth = tmeth;
return 1;
}
static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst)
{
for (; lst; lst = lst->next) {
if (strcmp(lst->name, name) == 0) {
if (ppk)
*ppk = lst->key;
return 1;
}
}
return 0;
}
static void free_key_list(KEY_LIST *lst)
{
while (lst != NULL) {
KEY_LIST *ltmp;
EVP_PKEY_free(lst->key);
OPENSSL_free(lst->name);
ltmp = lst->next;
OPENSSL_free(lst);
lst = ltmp;
}
}
static int check_unsupported()
{
long err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_EVP
&& ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
ERR_clear_error();
return 1;
}
#ifndef OPENSSL_NO_EC
/*
* If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an
* hint to an unsupported algorithm/curve (e.g. if binary EC support is
* disabled).
*/
if (ERR_GET_LIB(err) == ERR_LIB_EC
&& ERR_GET_REASON(err) == EC_R_UNKNOWN_GROUP) {
ERR_clear_error();
return 1;
}
#endif /* OPENSSL_NO_EC */
return 0;
}
static int read_key(EVP_TEST *t)
{
char tmpbuf[80];
if (t->key == NULL) {
if (!TEST_ptr(t->key = BIO_new(BIO_s_mem())))
return 0;
} else if (!TEST_int_gt(BIO_reset(t->key), 0)) {
return 0;
}
/* Read to PEM end line and place content in memory BIO */
while (BIO_gets(t->in, tmpbuf, sizeof(tmpbuf))) {
t->line++;
if (!TEST_int_gt(BIO_puts(t->key, tmpbuf), 0))
return 0;
if (strncmp(tmpbuf, "-----END", 8) == 0)
return 1;
}
TEST_error("Can't find key end");
return 0;
}
/*
* Parse a line into the current test |t|. Return 0 on error.
*/
static int parse_test_line(EVP_TEST *t, char *buf)
{
char *keyword = NULL, *value = NULL;
int add_key = 0;
KEY_LIST **lst = NULL, *key = NULL;
EVP_PKEY *pk = NULL;
const EVP_TEST_METHOD *tmeth = NULL;
if (!parse_line(&keyword, &value, buf))
return 1;
if (strcmp(keyword, "PrivateKey") == 0) {
if (!read_key(t))
return 0;
pk = PEM_read_bio_PrivateKey(t->key, NULL, 0, NULL);
if (pk == NULL && !check_unsupported()) {
TEST_info("Error reading private key %s", value);
ERR_print_errors_fp(stderr);
return 0;
}
lst = &private_keys;
add_key = 1;
}
if (strcmp(keyword, "PublicKey") == 0) {
if (!read_key(t))
return 0;
pk = PEM_read_bio_PUBKEY(t->key, NULL, 0, NULL);
if (pk == NULL && !check_unsupported()) {
TEST_info("Error reading public key %s", value);
ERR_print_errors_fp(stderr);
return 0;
}
lst = &public_keys;
add_key = 1;
}
/* If we have a key add to list */
if (add_key) {
if (find_key(NULL, value, *lst)) {
TEST_info("Duplicate key %s", value);
return 0;
}
if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))
|| !TEST_ptr(key->name = OPENSSL_strdup(value)))
return 0;
key->key = pk;
key->next = *lst;
*lst = key;
return 1;
}
/* See if keyword corresponds to a test start */
if ((tmeth = evp_find_test(keyword)) != NULL) {
if (!run_and_get_next(t, tmeth))
return 0;
t->start_line = t->line;
t->skip = 0;
if (!tmeth->init(t, value)) {
TEST_info("Unknown %s: %s", keyword, value);
return 0;
}
return 1;
}
if (t->skip)
return 1;
if (strcmp(keyword, "Result") == 0) {
if (t->expected_err) {
TEST_info("Line %d: multiple result lines", t->line);
return 0;
}
if (!TEST_ptr(t->expected_err = OPENSSL_strdup(value)))
return 0;
} else if (strcmp(keyword, "Function") == 0) {
if (t->func != NULL) {
TEST_info("Line %d: multiple function lines\n", t->line);
return 0;
}
if (!TEST_ptr(t->func = OPENSSL_strdup(value)))
return 0;
} else if (strcmp(keyword, "Reason") == 0) {
if (t->reason != NULL) {
TEST_info("Line %d: multiple reason lines", t->line);
return 0;
}
if (!TEST_ptr(t->reason = OPENSSL_strdup(value)))
return 0;
} else {
/* Must be test specific line: try to parse it */
int rv = t->meth == NULL ? 0 : t->meth->parse(t, keyword, value);
if (rv == 0) {
TEST_info("Line %d: unknown keyword %s", t->line, keyword);
return 0;
}
if (rv < 0) {
TEST_info("Line %d: error processing keyword %s\n",
t->line, keyword);
return 0;
}
}
return 1;
}
/* Message digest tests */
2001-08-26 17:09:31 +00:00
typedef struct digest_data_st {
/* Digest this test is for */
const EVP_MD *digest;
/* Input to digest */
unsigned char *input;
size_t input_len;
/* Repeat count for input */
size_t nrpt;
/* Expected output */
unsigned char *output;
size_t output_len;
} DIGEST_DATA;
2001-08-26 17:09:31 +00:00
static int digest_test_init(EVP_TEST *t, const char *alg)
{
const EVP_MD *digest;
DIGEST_DATA *mdat;
digest = EVP_get_digestbyname(alg);
if (!digest) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
mdat = OPENSSL_zalloc(sizeof(*mdat));
mdat->digest = digest;
mdat->nrpt = 1;
t->data = mdat;
2001-08-26 17:09:31 +00:00
return 1;
}
2001-08-26 17:09:31 +00:00
static void digest_test_cleanup(EVP_TEST *t)
{
DIGEST_DATA *mdat = t->data;
OPENSSL_free(mdat->input);
OPENSSL_free(mdat->output);
}
static int digest_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
DIGEST_DATA *mdata = t->data;
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &mdata->input, &mdata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &mdata->output, &mdata->output_len);
if (strcmp(keyword, "Count") == 0) {
long nrpt = atoi(value);
if (nrpt <= 0)
return 0;
mdata->nrpt = (size_t)nrpt;
return 1;
}
return 0;
}
static int digest_test_run(EVP_TEST *t)
{
DIGEST_DATA *mdata = t->data;
size_t i;
EVP_MD_CTX *mctx;
2001-08-26 17:09:31 +00:00
unsigned char md[EVP_MAX_MD_SIZE];
unsigned int md_len;
t->err = "TEST_FAILURE";
if (!TEST_ptr(mctx = EVP_MD_CTX_new()))
goto err;
if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL)) {
t->err = "DIGESTINIT_ERROR";
goto err;
}
for (i = 0; i < mdata->nrpt; i++)
if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len)) {
t->err = "DIGESTUPDATE_ERROR";
goto err;
}
if (!EVP_DigestFinal(mctx, md, &md_len)) {
t->err = "DIGESTFINAL_ERROR";
goto err;
}
if (md_len != mdata->output_len) {
t->err = "DIGEST_LENGTH_MISMATCH";
goto err;
}
if (!TEST_mem_eq(mdata->output, mdata->output_len, md, md_len)) {
t->err = "DIGEST_MISMATCH";
goto err;
}
t->err = NULL;
err:
EVP_MD_CTX_free(mctx);
return 1;
}
2001-08-26 17:09:31 +00:00
static const EVP_TEST_METHOD digest_test_method = {
"Digest",
digest_test_init,
digest_test_cleanup,
digest_test_parse,
digest_test_run
};
/* Cipher tests */
typedef struct cipher_data_st {
const EVP_CIPHER *cipher;
int enc;
/* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
int aead;
unsigned char *key;
size_t key_len;
unsigned char *iv;
size_t iv_len;
unsigned char *plaintext;
size_t plaintext_len;
unsigned char *ciphertext;
size_t ciphertext_len;
/* GCM, CCM only */
unsigned char *aad;
size_t aad_len;
unsigned char *tag;
size_t tag_len;
} CIPHER_DATA;
static int cipher_test_init(EVP_TEST *t, const char *alg)
{
const EVP_CIPHER *cipher;
CIPHER_DATA *cdat = t->data;
cipher = EVP_get_cipherbyname(alg);
if (!cipher) {
/* If alg has an OID assume disabled algorithm */
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
t->skip = 1;
return 1;
}
return 0;
}
cdat = OPENSSL_malloc(sizeof(*cdat));
cdat->cipher = cipher;
cdat->enc = -1;
cdat->key = NULL;
cdat->iv = NULL;
cdat->ciphertext = NULL;
cdat->plaintext = NULL;
cdat->aad = NULL;
cdat->tag = NULL;
t->data = cdat;
if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE
|| EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE
|| EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE)
cdat->aead = EVP_CIPHER_mode(cipher);
else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
cdat->aead = -1;
else
cdat->aead = 0;
2001-08-26 17:09:31 +00:00
return 1;
}
2001-08-26 17:09:31 +00:00
static void cipher_test_cleanup(EVP_TEST *t)
{
CIPHER_DATA *cdat = t->data;
OPENSSL_free(cdat->key);
OPENSSL_free(cdat->iv);
OPENSSL_free(cdat->ciphertext);
OPENSSL_free(cdat->plaintext);
OPENSSL_free(cdat->aad);
OPENSSL_free(cdat->tag);
}
2001-08-26 17:09:31 +00:00
static int cipher_test_parse(EVP_TEST *t, const char *keyword,
const char *value)
{
CIPHER_DATA *cdat = t->data;
if (strcmp(keyword, "Key") == 0)
return test_bin(value, &cdat->key, &cdat->key_len);
if (strcmp(keyword, "IV") == 0)
return test_bin(value, &cdat->iv, &cdat->iv_len);
if (strcmp(keyword, "Plaintext") == 0)
return test_bin(value, &cdat->plaintext, &cdat->plaintext_len);
if (strcmp(keyword, "Ciphertext") == 0)
return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
if (cdat->aead) {
if (strcmp(keyword, "AAD") == 0)
return test_bin(value, &cdat->aad, &cdat->aad_len);
if (strcmp(keyword, "Tag") == 0)
return test_bin(value, &cdat->tag, &cdat->tag_len);
}
2001-08-26 17:09:31 +00:00
if (strcmp(keyword, "Operation") == 0) {
if (strcmp(value, "ENCRYPT") == 0)
cdat->enc = 1;
else if (strcmp(value, "DECRYPT") == 0)
cdat->enc = 0;
else
return 0;
return 1;
}
return 0;
}
2001-08-26 17:09:31 +00:00
static int cipher_test_enc(EVP_TEST *t, int enc,
size_t out_misalign, size_t inp_misalign, int frag)
{
CIPHER_DATA *cdat = t->data;
unsigned char *in, *out, *tmp = NULL;
size_t in_len, out_len, donelen = 0;
int ok = 0, tmplen, chunklen, tmpflen;
EVP_CIPHER_CTX *ctx = NULL;
t->err = "TEST_FAILURE";
if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new()))
goto err;
EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
if (enc) {
in = cdat->plaintext;
in_len = cdat->plaintext_len;
out = cdat->ciphertext;
out_len = cdat->ciphertext_len;
} else {
in = cdat->ciphertext;
in_len = cdat->ciphertext_len;
out = cdat->plaintext;
out_len = cdat->plaintext_len;
}
if (inp_misalign == (size_t)-1) {
/*
* Exercise in-place encryption
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign, in, in_len);
} else {
inp_misalign += 16 - ((out_misalign + in_len) & 15);
/*
* 'tmp' will store both output and copy of input. We make the copy
* of input to specifically aligned part of 'tmp'. So we just
* figured out how much padding would ensure the required alignment,
* now we allocate extended buffer and finally copy the input just
* past inp_misalign in expression below. Output will be written
* past out_misalign...
*/
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign + in_len);
if (!tmp)
goto err;
in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
inp_misalign, in, in_len);
}
if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc)) {
t->err = "CIPHERINIT_ERROR";
goto err;
}
if (cdat->iv) {
if (cdat->aead) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
cdat->iv_len, 0)) {
t->err = "INVALID_IV_LENGTH";
goto err;
}
} else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx)) {
t->err = "INVALID_IV_LENGTH";
goto err;
}
}
if (cdat->aead) {
unsigned char *tag;
/*
* If encrypting or OCB just set tag length initially, otherwise
* set tag length and value.
*/
if (enc || cdat->aead == EVP_CIPH_OCB_MODE) {
t->err = "TAG_LENGTH_SET_ERROR";
tag = NULL;
} else {
t->err = "TAG_SET_ERROR";
tag = cdat->tag;
}
if (tag || cdat->aead != EVP_CIPH_GCM_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
cdat->tag_len, tag))
goto err;
}
}
if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len)) {
t->err = "INVALID_KEY_LENGTH";
goto err;
}
if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1)) {
t->err = "KEY_SET_ERROR";
goto err;
}
if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) {
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
cdat->tag_len, cdat->tag)) {
t->err = "TAG_SET_ERROR";
goto err;
}
}
if (cdat->aead == EVP_CIPH_CCM_MODE) {
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
goto err;
}
}
if (cdat->aad) {
t->err = "AAD_SET_ERROR";
if (!frag) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad,
cdat->aad_len))
goto err;
} else {
/*
* Supply the AAD in chunks less than the block size where possible
*/
if (cdat->aad_len > 0) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad, 1))
goto err;
donelen++;
}
if (cdat->aad_len > 2) {
if (!EVP_CipherUpdate(ctx, NULL, &chunklen, cdat->aad + donelen,
cdat->aad_len - 2))
goto err;
donelen += cdat->aad_len - 2;
}
if (cdat->aad_len > 1
&& !EVP_CipherUpdate(ctx, NULL, &chunklen,
cdat->aad + donelen, 1))
goto err;
}
}
EVP_CIPHER_CTX_set_padding(ctx, 0);
t->err = "CIPHERUPDATE_ERROR";
tmplen = 0;
if (!frag) {
/* We supply the data all in one go */
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
goto err;
} else {
/* Supply the data in chunks less than the block size where possible */
if (in_len > 0) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1))
goto err;
tmplen += chunklen;
in++;
in_len--;
}
if (in_len > 1) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
in, in_len - 1))
goto err;
tmplen += chunklen;
in += in_len - 1;
in_len = 1;
}
if (in_len > 0 ) {
if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen,
in, 1))
goto err;
tmplen += chunklen;
}
}
if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) {
t->err = "CIPHERFINAL_ERROR";
goto err;
}
if (!TEST_mem_eq(out, out_len, tmp + out_misalign, tmplen + tmpflen)) {
t->err = "VALUE_MISMATCH";
goto err;
}
if (enc && cdat->aead) {
unsigned char rtag[16];
if (cdat->tag_len > sizeof(rtag)) {
t->err = "TAG_LENGTH_INTERNAL_ERROR";
goto err;
}
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
cdat->tag_len, rtag)) {
t->err = "TAG_RETRIEVE_ERROR";
goto err;
}
if (!TEST_mem_eq(cdat->tag, cdat->tag_len, rtag, cdat->tag_len)) {
t->err = "TAG_VALUE_MISMATCH";
goto err;
}
}
t->err = NULL;
ok = 1;
err:
OPENSSL_free(tmp);
EVP_CIPHER_CTX_free(ctx);
return ok;
}
2001-08-18 13:53:01 +00:00
static int cipher_test_run(EVP_TEST *t)
{
CIPHER_DATA *cdat = t->data;
int rv, frag = 0;
size_t out_misalign, inp_misalign;
if (!cdat->key) {
t->err = "NO_KEY";
return 0;
}
if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
/* IV is optional and usually omitted in wrap mode */
if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
t->err = "NO_IV";
return 0;
}
}
if (cdat->aead && !cdat->tag) {
t->err = "NO_TAG";
return 0;
}
for (out_misalign = 0; out_misalign <= 1;) {
static char aux_err[64];
t->aux_err = aux_err;
for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
if (inp_misalign == (size_t)-1) {
/* kludge: inp_misalign == -1 means "exercise in-place" */
BIO_snprintf(aux_err, sizeof(aux_err),
"%s in-place, %sfragmented",
out_misalign ? "misaligned" : "aligned",
frag ? "" : "not ");
} else {
BIO_snprintf(aux_err, sizeof(aux_err),
"%s output and %s input, %sfragmented",
out_misalign ? "misaligned" : "aligned",
inp_misalign ? "misaligned" : "aligned",
frag ? "" : "not ");
}
if (cdat->enc) {
rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
if (cdat->enc != 1) {
rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag);
/* Not fatal errors: return */
if (rv != 1) {
if (rv < 0)
return 0;
return 1;
}
}
}
if (out_misalign == 1 && frag == 0) {
/*
* XTS, CCM and Wrap modes have special requirements about input
* lengths so we don't fragment for those
*/
if (cdat->aead == EVP_CIPH_CCM_MODE
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_XTS_MODE
|| EVP_CIPHER_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE)
break;
out_misalign = 0;
frag++;
} else {
out_misalign++;
}
}
t->aux_err = NULL;
return 1;
}
static const EVP_TEST_METHOD cipher_test_method = {
"Cipher",
cipher_test_init,
cipher_test_cleanup,
cipher_test_parse,
cipher_test_run
};
typedef struct mac_data_st {
/* MAC type */
int type;
/* Algorithm string for this MAC */
char *alg;
/* MAC key */
unsigned char *key;
size_t key_len;
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
} MAC_DATA;
static int mac_test_init(EVP_TEST *t, const char *alg)
{
int type;
MAC_DATA *mdat;
if (strcmp(alg, "HMAC") == 0) {
type = EVP_PKEY_HMAC;
} else if (strcmp(alg, "CMAC") == 0) {
#ifndef OPENSSL_NO_CMAC
type = EVP_PKEY_CMAC;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "Poly1305") == 0) {
#ifndef OPENSSL_NO_POLY1305
type = EVP_PKEY_POLY1305;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "SipHash") == 0) {
#ifndef OPENSSL_NO_SIPHASH
type = EVP_PKEY_SIPHASH;
#else
t->skip = 1;
return 1;
#endif
} else
return 0;
mdat = OPENSSL_zalloc(sizeof(*mdat));
mdat->type = type;
t->data = mdat;
return 1;
}
static void mac_test_cleanup(EVP_TEST *t)
{
MAC_DATA *mdat = t->data;
OPENSSL_free(mdat->alg);
OPENSSL_free(mdat->key);
OPENSSL_free(mdat->input);
OPENSSL_free(mdat->output);
}
static int mac_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
MAC_DATA *mdata = t->data;
if (strcmp(keyword, "Key") == 0)
return test_bin(value, &mdata->key, &mdata->key_len);
if (strcmp(keyword, "Algorithm") == 0) {
mdata->alg = OPENSSL_strdup(value);
if (!mdata->alg)
return 0;
return 1;
}
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &mdata->input, &mdata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &mdata->output, &mdata->output_len);
return 0;
}
static int mac_test_run(EVP_TEST *t)
{
MAC_DATA *mdata = t->data;
EVP_MD_CTX *mctx = NULL;
EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
EVP_PKEY *key = NULL;
const EVP_MD *md = NULL;
unsigned char *mac = NULL;
size_t mac_len;
#ifdef OPENSSL_NO_DES
if (mdata->alg != NULL && strstr(mdata->alg, "DES") != NULL) {
/* Skip DES */
t->err = NULL;
goto err;
}
#endif
if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL))) {
t->err = "MAC_PKEY_CTX_ERROR";
goto err;
}
if (EVP_PKEY_keygen_init(genctx) <= 0) {
t->err = "MAC_KEYGEN_INIT_ERROR";
goto err;
}
if (mdata->type == EVP_PKEY_CMAC
&& EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0) {
t->err = "MAC_ALGORITHM_SET_ERROR";
goto err;
}
if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0) {
t->err = "MAC_KEY_SET_ERROR";
goto err;
}
if (EVP_PKEY_keygen(genctx, &key) <= 0) {
t->err = "MAC_KEY_GENERATE_ERROR";
goto err;
}
if (mdata->type == EVP_PKEY_HMAC) {
if (!TEST_ptr(md = EVP_get_digestbyname(mdata->alg))) {
t->err = "MAC_ALGORITHM_SET_ERROR";
goto err;
}
}
if (!TEST_ptr(mctx = EVP_MD_CTX_new())) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key)) {
t->err = "DIGESTSIGNINIT_ERROR";
goto err;
}
if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len)) {
t->err = "DIGESTSIGNUPDATE_ERROR";
goto err;
}
if (!EVP_DigestSignFinal(mctx, NULL, &mac_len)) {
t->err = "DIGESTSIGNFINAL_LENGTH_ERROR";
goto err;
}
if (!TEST_ptr(mac = OPENSSL_malloc(mac_len))) {
t->err = "TEST_FAILURE";
goto err;
}
if (!EVP_DigestSignFinal(mctx, mac, &mac_len)
|| !TEST_mem_eq(mdata->output, mdata->output_len, mac, mac_len)) {
t->err = "TEST_MAC_ERR";
goto err;
}
t->err = NULL;
err:
EVP_MD_CTX_free(mctx);
OPENSSL_free(mac);
EVP_PKEY_CTX_free(genctx);
EVP_PKEY_free(key);
return 1;
}
static const EVP_TEST_METHOD mac_test_method = {
"MAC",
mac_test_init,
mac_test_cleanup,
mac_test_parse,
mac_test_run
};
/*
* Public key operations. These are all very similar and can share
* a lot of common code.
*/
typedef struct pkey_data_st {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Key operation to perform */
int (*keyop) (EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs, size_t tbslen);
/* Input to MAC */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
} PKEY_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int pkey_test_init(EVP_TEST *t, const char *name,
int use_public,
int (*keyopinit) (EVP_PKEY_CTX *ctx),
int (*keyop) (EVP_PKEY_CTX *ctx,
unsigned char *sig, size_t *siglen,
const unsigned char *tbs,
size_t tbslen)
)
{
PKEY_DATA *kdata;
EVP_PKEY *pkey = NULL;
int rv = 0;
if (use_public)
rv = find_key(&pkey, name, public_keys);
if (rv == 0)
rv = find_key(&pkey, name, private_keys);
if (rv == 0 || pkey == NULL) {
t->skip = 1;
return 1;
}
if (!TEST_ptr(kdata = OPENSSL_malloc(sizeof(*kdata)))) {
EVP_PKEY_free(pkey);
return 0;
}
kdata->ctx = NULL;
kdata->input = NULL;
kdata->output = NULL;
kdata->keyop = keyop;
t->data = kdata;
if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL)))
return 0;
if (keyopinit(kdata->ctx) <= 0)
t->err = "KEYOP_INIT_ERROR";
return 1;
}
static void pkey_test_cleanup(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
OPENSSL_free(kdata->input);
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx,
const char *value)
{
int rv;
char *p, *tmpval;
if (!TEST_ptr(tmpval = OPENSSL_strdup(value)))
return 0;
p = strchr(tmpval, ':');
if (p != NULL)
*p++ = 0;
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
if (rv == -2) {
t->err = "PKEY_CTRL_INVALID";
rv = 1;
} else if (p != NULL && rv <= 0) {
/* If p has an OID and lookup fails assume disabled algorithm */
int nid = OBJ_sn2nid(p);
if (nid == NID_undef)
nid = OBJ_ln2nid(p);
if ((nid != NID_undef) && EVP_get_digestbynid(nid) == NULL &&
EVP_get_cipherbynid(nid) == NULL) {
t->skip = 1;
rv = 1;
} else {
t->err = "PKEY_CTRL_ERROR";
rv = 1;
}
}
OPENSSL_free(tmpval);
return rv > 0;
}
static int pkey_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_DATA *kdata = t->data;
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &kdata->input, &kdata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pkey_test_run(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
unsigned char *out = NULL;
size_t out_len;
if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input,
kdata->input_len) <= 0
|| !TEST_ptr(out = OPENSSL_malloc(out_len))) {
t->err = "KEYOP_LENGTH_ERROR";
goto err;
}
if (kdata->keyop(kdata->ctx, out,
&out_len, kdata->input, kdata->input_len) <= 0) {
t->err = "KEYOP_ERROR";
goto err;
}
if (!TEST_mem_eq(kdata->output, kdata->output_len, out, out_len)) {
t->err = "KEYOP_MISMATCH";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(out);
return 1;
}
static int sign_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
}
static const EVP_TEST_METHOD psign_test_method = {
"Sign",
sign_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_recover_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
EVP_PKEY_verify_recover);
}
static const EVP_TEST_METHOD pverify_recover_test_method = {
"VerifyRecover",
verify_recover_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int decrypt_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
EVP_PKEY_decrypt);
}
static const EVP_TEST_METHOD pdecrypt_test_method = {
"Decrypt",
decrypt_test_init,
pkey_test_cleanup,
pkey_test_parse,
pkey_test_run
};
static int verify_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
}
static int verify_test_run(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
kdata->input, kdata->input_len) <= 0)
t->err = "VERIFY_ERROR";
return 1;
}
static const EVP_TEST_METHOD pverify_test_method = {
"Verify",
verify_test_init,
pkey_test_cleanup,
pkey_test_parse,
verify_test_run
};
static int pderive_test_init(EVP_TEST *t, const char *name)
{
return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
}
static int pderive_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PKEY_DATA *kdata = t->data;
if (strcmp(keyword, "PeerKey") == 0) {
EVP_PKEY *peer;
if (find_key(&peer, value, public_keys) == 0)
return 0;
if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
return 0;
return 1;
}
if (strcmp(keyword, "SharedSecret") == 0)
return test_bin(value, &kdata->output, &kdata->output_len);
if (strcmp(keyword, "Ctrl") == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int pderive_test_run(EVP_TEST *t)
{
PKEY_DATA *kdata = t->data;
unsigned char *out = NULL;
size_t out_len;
out_len = kdata->output_len;
if (!TEST_ptr(out = OPENSSL_malloc(out_len))) {
t->err = "DERIVE_ERROR";
goto err;
}
if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0) {
t->err = "DERIVE_ERROR";
goto err;
}
if (!TEST_mem_eq(kdata->output, kdata->output_len, out, out_len)) {
t->err = "SHARED_SECRET_MISMATCH";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(out);
return 1;
}
static const EVP_TEST_METHOD pderive_test_method = {
"Derive",
pderive_test_init,
pkey_test_cleanup,
pderive_test_parse,
pderive_test_run
};
/* PBE tests */
#define PBE_TYPE_SCRYPT 1
#define PBE_TYPE_PBKDF2 2
#define PBE_TYPE_PKCS12 3
typedef struct pbe_data_st {
int pbe_type;
/* scrypt parameters */
uint64_t N, r, p, maxmem;
/* PKCS#12 parameters */
int id, iter;
const EVP_MD *md;
/* password */
unsigned char *pass;
size_t pass_len;
/* salt */
unsigned char *salt;
size_t salt_len;
/* Expected output */
unsigned char *key;
size_t key_len;
} PBE_DATA;
#ifndef OPENSSL_NO_SCRYPT
static int scrypt_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "N") == 0)
return test_uint64(value, &pdata->N);
if (strcmp(keyword, "p") == 0)
return test_uint64(value, &pdata->p);
if (strcmp(keyword, "r") == 0)
return test_uint64(value, &pdata->r);
if (strcmp(keyword, "maxmem") == 0)
return test_uint64(value, &pdata->maxmem);
return 0;
}
#endif
static int pbkdf2_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "iter") == 0) {
pdata->iter = atoi(value);
if (pdata->iter <= 0)
return 0;
return 1;
}
if (strcmp(keyword, "MD") == 0) {
pdata->md = EVP_get_digestbyname(value);
if (pdata->md == NULL)
return 0;
return 1;
}
return 0;
}
static int pkcs12_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "id") == 0) {
pdata->id = atoi(value);
if (pdata->id <= 0)
return 0;
return 1;
}
return pbkdf2_test_parse(t, keyword, value);
}
static int pbe_test_init(EVP_TEST *t, const char *alg)
{
PBE_DATA *pdat;
int pbe_type = 0;
if (strcmp(alg, "scrypt") == 0) {
#ifndef OPENSSL_NO_SCRYPT
pbe_type = PBE_TYPE_SCRYPT;
#else
t->skip = 1;
return 1;
#endif
} else if (strcmp(alg, "pbkdf2") == 0) {
pbe_type = PBE_TYPE_PBKDF2;
} else if (strcmp(alg, "pkcs12") == 0) {
pbe_type = PBE_TYPE_PKCS12;
} else {
TEST_error("Unknown pbe algorithm %s", alg);
}
pdat = OPENSSL_malloc(sizeof(*pdat));
pdat->pbe_type = pbe_type;
pdat->pass = NULL;
pdat->salt = NULL;
pdat->N = 0;
pdat->r = 0;
pdat->p = 0;
pdat->maxmem = 0;
pdat->id = 0;
pdat->iter = 0;
pdat->md = NULL;
t->data = pdat;
return 1;
}
static void pbe_test_cleanup(EVP_TEST *t)
{
PBE_DATA *pdat = t->data;
OPENSSL_free(pdat->pass);
OPENSSL_free(pdat->salt);
OPENSSL_free(pdat->key);
}
static int pbe_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
PBE_DATA *pdata = t->data;
if (strcmp(keyword, "Password") == 0)
return test_bin(value, &pdata->pass, &pdata->pass_len);
if (strcmp(keyword, "Salt") == 0)
return test_bin(value, &pdata->salt, &pdata->salt_len);
if (strcmp(keyword, "Key") == 0)
return test_bin(value, &pdata->key, &pdata->key_len);
if (pdata->pbe_type == PBE_TYPE_PBKDF2)
return pbkdf2_test_parse(t, keyword, value);
else if (pdata->pbe_type == PBE_TYPE_PKCS12)
return pkcs12_test_parse(t, keyword, value);
#ifndef OPENSSL_NO_SCRYPT
else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
return scrypt_test_parse(t, keyword, value);
#endif
return 0;
}
static int pbe_test_run(EVP_TEST *t)
{
PBE_DATA *pdata = t->data;
unsigned char *key;
if (!TEST_ptr(key = OPENSSL_malloc(pdata->key_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (pdata->pbe_type == PBE_TYPE_PBKDF2) {
if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len,
pdata->salt, pdata->salt_len,
pdata->iter, pdata->md,
pdata->key_len, key) == 0) {
t->err = "PBKDF2_ERROR";
goto err;
}
#ifndef OPENSSL_NO_SCRYPT
} else if (pdata->pbe_type == PBE_TYPE_SCRYPT) {
if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len,
pdata->salt, pdata->salt_len,
pdata->N, pdata->r, pdata->p, pdata->maxmem,
key, pdata->key_len) == 0) {
t->err = "SCRYPT_ERROR";
goto err;
}
#endif
} else if (pdata->pbe_type == PBE_TYPE_PKCS12) {
if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len,
pdata->salt, pdata->salt_len,
pdata->id, pdata->iter, pdata->key_len,
key, pdata->md) == 0) {
t->err = "PKCS12_ERROR";
goto err;
}
}
if (!TEST_mem_eq(pdata->key, pdata->key_len, key, pdata->key_len)) {
t->err = "KEY_MISMATCH";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(key);
return 1;
}
static const EVP_TEST_METHOD pbe_test_method = {
"PBE",
pbe_test_init,
pbe_test_cleanup,
pbe_test_parse,
pbe_test_run
};
/* Base64 tests */
typedef enum {
BASE64_CANONICAL_ENCODING = 0,
BASE64_VALID_ENCODING = 1,
BASE64_INVALID_ENCODING = 2
} base64_encoding_type;
typedef struct encode_data_st {
/* Input to encoding */
unsigned char *input;
size_t input_len;
/* Expected output */
unsigned char *output;
size_t output_len;
base64_encoding_type encoding;
} ENCODE_DATA;
static int encode_test_init(EVP_TEST *t, const char *encoding)
{
ENCODE_DATA *edata = OPENSSL_zalloc(sizeof(*edata));
if (strcmp(encoding, "canonical") == 0) {
edata->encoding = BASE64_CANONICAL_ENCODING;
} else if (strcmp(encoding, "valid") == 0) {
edata->encoding = BASE64_VALID_ENCODING;
} else if (strcmp(encoding, "invalid") == 0) {
edata->encoding = BASE64_INVALID_ENCODING;
t->expected_err = OPENSSL_strdup("DECODE_ERROR");
if (t->expected_err == NULL)
return 0;
} else {
TEST_info("Bad encoding: %s. Should be one of "
"{canonical, valid, invalid}", encoding);
return 0;
}
t->data = edata;
return 1;
}
static void encode_test_cleanup(EVP_TEST *t)
{
ENCODE_DATA *edata = t->data;
OPENSSL_free(edata->input);
OPENSSL_free(edata->output);
memset(edata, 0, sizeof(*edata));
}
static int encode_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
ENCODE_DATA *edata = t->data;
if (strcmp(keyword, "Input") == 0)
return test_bin(value, &edata->input, &edata->input_len);
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &edata->output, &edata->output_len);
return 0;
}
static int encode_test_run(EVP_TEST *t)
{
ENCODE_DATA *edata = t->data;
unsigned char *encode_out = NULL, *decode_out = NULL;
int output_len, chunk_len;
EVP_ENCODE_CTX *decode_ctx;
if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (edata->encoding == BASE64_CANONICAL_ENCODING) {
EVP_ENCODE_CTX *encode_ctx;
if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new())
|| !TEST_ptr(encode_out =
OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len))))
goto err;
EVP_EncodeInit(encode_ctx);
EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
edata->input, edata->input_len);
output_len = chunk_len;
EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
output_len += chunk_len;
EVP_ENCODE_CTX_free(encode_ctx);
if (!TEST_mem_eq(edata->output, edata->output_len,
encode_out, output_len)) {
t->err = "BAD_ENCODING";
goto err;
}
}
if (!TEST_ptr(decode_out =
OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len))))
goto err;
EVP_DecodeInit(decode_ctx);
if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output,
edata->output_len) < 0) {
t->err = "DECODE_ERROR";
goto err;
}
output_len = chunk_len;
if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
t->err = "DECODE_ERROR";
goto err;
}
output_len += chunk_len;
if (edata->encoding != BASE64_INVALID_ENCODING
&& !TEST_mem_eq(edata->input, edata->input_len,
decode_out, output_len)) {
t->err = "BAD_DECODING";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(encode_out);
OPENSSL_free(decode_out);
EVP_ENCODE_CTX_free(decode_ctx);
return 1;
}
static const EVP_TEST_METHOD encode_test_method = {
"Encoding",
encode_test_init,
encode_test_cleanup,
encode_test_parse,
encode_test_run,
};
/* KDF operations */
typedef struct kdf_data_st {
/* Context for this operation */
EVP_PKEY_CTX *ctx;
/* Expected output */
unsigned char *output;
size_t output_len;
} KDF_DATA;
/*
* Perform public key operation setup: lookup key, allocated ctx and call
* the appropriate initialisation function
*/
static int kdf_test_init(EVP_TEST *t, const char *name)
{
KDF_DATA *kdata;
kdata = OPENSSL_malloc(sizeof(*kdata));
if (kdata == NULL)
return 0;
kdata->ctx = NULL;
kdata->output = NULL;
t->data = kdata;
kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL);
if (kdata->ctx == NULL)
return 0;
if (EVP_PKEY_derive_init(kdata->ctx) <= 0)
return 0;
return 1;
}
static void kdf_test_cleanup(EVP_TEST *t)
{
KDF_DATA *kdata = t->data;
OPENSSL_free(kdata->output);
EVP_PKEY_CTX_free(kdata->ctx);
}
static int kdf_test_parse(EVP_TEST *t,
const char *keyword, const char *value)
{
KDF_DATA *kdata = t->data;
if (strcmp(keyword, "Output") == 0)
return test_bin(value, &kdata->output, &kdata->output_len);
if (strncmp(keyword, "Ctrl", 4) == 0)
return pkey_test_ctrl(t, kdata->ctx, value);
return 0;
}
static int kdf_test_run(EVP_TEST *t)
{
KDF_DATA *kdata = t->data;
unsigned char *out = NULL;
size_t out_len = kdata->output_len;
if (!TEST_ptr(out = OPENSSL_malloc(out_len))) {
t->err = "INTERNAL_ERROR";
goto err;
}
if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0) {
t->err = "KDF_DERIVE_ERROR";
goto err;
}
if (!TEST_mem_eq(kdata->output, kdata->output_len, out, out_len)) {
t->err = "KDF_MISMATCH";
goto err;
}
t->err = NULL;
err:
OPENSSL_free(out);
return 1;
}
static const EVP_TEST_METHOD kdf_test_method = {
"KDF",
kdf_test_init,
kdf_test_cleanup,
kdf_test_parse,
kdf_test_run
};
typedef struct keypair_test_data_st {
EVP_PKEY *privk;
EVP_PKEY *pubk;
} KEYPAIR_TEST_DATA;
static int keypair_test_init(EVP_TEST *t, const char *pair)
{
int rv = 0;
EVP_PKEY *pk = NULL, *pubk = NULL;
char *pub, *priv = NULL;
KEYPAIR_TEST_DATA *data;
if (!TEST_ptr(priv = OPENSSL_strdup(pair))
|| !TEST_ptr(pub = strchr(priv, ':'))) {
t->err = "PARSING_ERROR";
goto end;
}
*pub++ = 0; /* split priv and pub strings */
if (!TEST_true(find_key(&pk, priv, private_keys))) {
TEST_info("Cannot find private key: %s", priv);
t->err = "MISSING_PRIVATE_KEY";
goto end;
}
if (!TEST_true(find_key(&pubk, pub, public_keys))) {
TEST_info("Cannot find public key: %s", pub);
t->err = "MISSING_PUBLIC_KEY";
goto end;
}
if (pk == NULL && pubk == NULL) {
/* Both keys are listed but unsupported: skip this test */
t->skip = 1;
rv = 1;
goto end;
}
if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data))))
goto end;
data->privk = pk;
data->pubk = pubk;
t->data = data;
rv = 1;
t->err = NULL;
end:
OPENSSL_free(priv);
return rv;
}
static void keypair_test_cleanup(EVP_TEST *t)
{
OPENSSL_free(t->data);
t->data = NULL;
}
/* For test that do not accept any custom keyword:
* return 0 if called
*/
static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value)
{
return 0;
}
static int keypair_test_run(EVP_TEST *t)
{
int rv = 0;
const KEYPAIR_TEST_DATA *pair = t->data;
if (pair->privk == NULL || pair->pubk == NULL) {
/*
* this can only happen if only one of the keys is not set
* which means that one of them was unsupported while the
* other isn't: hence a key type mismatch.
*/
t->err = "KEYPAIR_TYPE_MISMATCH";
rv = 1;
goto end;
}
if ((rv = EVP_PKEY_cmp(pair->privk, pair->pubk)) != 1 ) {
if ( 0 == rv ) {
t->err = "KEYPAIR_MISMATCH";
} else if ( -1 == rv ) {
t->err = "KEYPAIR_TYPE_MISMATCH";
} else if ( -2 == rv ) {
t->err = "UNSUPPORTED_KEY_COMPARISON";
} else {
TEST_error("Unexpected error in key comparison");
rv = 0;
goto end;
}
rv = 1;
goto end;
}
rv = 1;
t->err = NULL;
end:
return rv;
}
static const EVP_TEST_METHOD keypair_test_method = {
"PrivPubKeyPair",
keypair_test_init,
keypair_test_cleanup,
void_test_parse,
keypair_test_run
};
static int do_test_file(const char *testfile)
{
BIO *in;
char buf[10240];
EVP_TEST t;
if (!TEST_ptr(in = BIO_new_file(testfile, "rb")))
return 0;
memset(&t, 0, sizeof(t));
t.start_line = -1;
t.in = in;
t.err = NULL;
while (BIO_gets(in, buf, sizeof(buf))) {
t.line++;
if (!TEST_true(parse_test_line(&t, buf)))
return 0;
}
/* Run any final test we have */
if (!run_and_get_next(&t, NULL))
return 0;
TEST_info("Completed %d tests with %d errors and %d skipped",
t.ntests, t.errors, t.nskip);
free_key_list(public_keys);
free_key_list(private_keys);
BIO_free(t.key);
BIO_free(in);
return t.errors == 0;
}
static char * const *testfiles;
static int run_file_tests(int i)
{
return do_test_file(testfiles[i]);
}
int test_main(int argc, char *argv[])
{
if (argc < 2) {
TEST_error("Usage: %s file...", argv[0]);
return 0;
}
testfiles = &argv[1];
ADD_ALL_TESTS(run_file_tests, argc - 1);
return run_tests(argv[0]);
}