openssl/crypto/bn/asm/x86-gf2m.pl

319 lines
7.6 KiB
Perl
Raw Normal View History

#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# May 2011
#
# The module implements bn_GF2m_mul_2x2 polynomial multiplication used
# in bn_gf2m.c. It's kind of low-hanging mechanical port from C for
# the time being... Except that it has three code paths: pure integer
# code suitable for any x86 CPU, MMX code suitable for PIII and later
# and PCLMULQDQ suitable for Westmere and later. Improvement varies
# from one benchmark and µ-arch to another. Below are interval values
# for 163- and 571-bit ECDH benchmarks relative to compiler-generated
# code:
#
# PIII 16%-30%
# P4 12%-12%
# Opteron 18%-40%
# Core2 19%-44%
# Atom 38%-64%
# Westmere 53%-121%(PCLMULQDQ)/20%-32%(MMX)
# Sandy Bridge 72%-127%(PCLMULQDQ)/27%-23%(MMX)
#
# Note that above improvement coefficients are not coefficients for
# bn_GF2m_mul_2x2 itself. For example 120% ECDH improvement is result
# of bn_GF2m_mul_2x2 being >4x faster. As it gets faster, benchmark
# is more and more dominated by other subroutines, most notably by
# BN_GF2m_mod[_mul]_arr...
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
push(@INC,"${dir}","${dir}../../perlasm");
require "x86asm.pl";
$output = pop;
open STDOUT,">$output";
&asm_init($ARGV[0],$0,$x86only = $ARGV[$#ARGV] eq "386");
$sse2=0;
for (@ARGV) { $sse2=1 if (/-DOPENSSL_IA32_SSE2/); }
&external_label("OPENSSL_ia32cap_P") if ($sse2);
$a="eax";
$b="ebx";
($a1,$a2,$a4)=("ecx","edx","ebp");
$R="mm0";
@T=("mm1","mm2");
($A,$B,$B30,$B31)=("mm2","mm3","mm4","mm5");
@i=("esi","edi");
if (!$x86only) {
&function_begin_B("_mul_1x1_mmx");
&sub ("esp",32+4);
&mov ($a1,$a);
&lea ($a2,&DWP(0,$a,$a));
&and ($a1,0x3fffffff);
&lea ($a4,&DWP(0,$a2,$a2));
&mov (&DWP(0*4,"esp"),0);
&and ($a2,0x7fffffff);
&movd ($A,$a);
&movd ($B,$b);
&mov (&DWP(1*4,"esp"),$a1); # a1
&xor ($a1,$a2); # a1^a2
&pxor ($B31,$B31);
&pxor ($B30,$B30);
&mov (&DWP(2*4,"esp"),$a2); # a2
&xor ($a2,$a4); # a2^a4
&mov (&DWP(3*4,"esp"),$a1); # a1^a2
&pcmpgtd($B31,$A); # broadcast 31st bit
&paddd ($A,$A); # $A<<=1
&xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
&mov (&DWP(4*4,"esp"),$a4); # a4
&xor ($a4,$a2); # a2=a4^a2^a4
&pand ($B31,$B);
&pcmpgtd($B30,$A); # broadcast 30th bit
&mov (&DWP(5*4,"esp"),$a1); # a1^a4
&xor ($a4,$a1); # a1^a2^a4
&psllq ($B31,31);
&pand ($B30,$B);
&mov (&DWP(6*4,"esp"),$a2); # a2^a4
&mov (@i[0],0x7);
&mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
&mov ($a4,@i[0]);
&and (@i[0],$b);
&shr ($b,3);
&mov (@i[1],$a4);
&psllq ($B30,30);
&and (@i[1],$b);
&shr ($b,3);
&movd ($R,&DWP(0,"esp",@i[0],4));
&mov (@i[0],$a4);
&and (@i[0],$b);
&shr ($b,3);
for($n=1;$n<9;$n++) {
&movd (@T[1],&DWP(0,"esp",@i[1],4));
&mov (@i[1],$a4);
&psllq (@T[1],3*$n);
&and (@i[1],$b);
&shr ($b,3);
&pxor ($R,@T[1]);
push(@i,shift(@i)); push(@T,shift(@T));
}
&movd (@T[1],&DWP(0,"esp",@i[1],4));
&pxor ($R,$B30);
&psllq (@T[1],3*$n++);
&pxor ($R,@T[1]);
&movd (@T[0],&DWP(0,"esp",@i[0],4));
&pxor ($R,$B31);
&psllq (@T[0],3*$n);
&add ("esp",32+4);
&pxor ($R,@T[0]);
&ret ();
&function_end_B("_mul_1x1_mmx");
}
($lo,$hi)=("eax","edx");
@T=("ecx","ebp");
&function_begin_B("_mul_1x1_ialu");
&sub ("esp",32+4);
&mov ($a1,$a);
&lea ($a2,&DWP(0,$a,$a));
&lea ($a4,&DWP(0,"",$a,4));
&and ($a1,0x3fffffff);
&lea (@i[1],&DWP(0,$lo,$lo));
&sar ($lo,31); # broadcast 31st bit
&mov (&DWP(0*4,"esp"),0);
&and ($a2,0x7fffffff);
&mov (&DWP(1*4,"esp"),$a1); # a1
&xor ($a1,$a2); # a1^a2
&mov (&DWP(2*4,"esp"),$a2); # a2
&xor ($a2,$a4); # a2^a4
&mov (&DWP(3*4,"esp"),$a1); # a1^a2
&xor ($a1,$a2); # a1^a4=a1^a2^a2^a4
&mov (&DWP(4*4,"esp"),$a4); # a4
&xor ($a4,$a2); # a2=a4^a2^a4
&mov (&DWP(5*4,"esp"),$a1); # a1^a4
&xor ($a4,$a1); # a1^a2^a4
&sar (@i[1],31); # broardcast 30th bit
&and ($lo,$b);
&mov (&DWP(6*4,"esp"),$a2); # a2^a4
&and (@i[1],$b);
&mov (&DWP(7*4,"esp"),$a4); # a1^a2^a4
&mov ($hi,$lo);
&shl ($lo,31);
&mov (@T[0],@i[1]);
&shr ($hi,1);
&mov (@i[0],0x7);
&shl (@i[1],30);
&and (@i[0],$b);
&shr (@T[0],2);
&xor ($lo,@i[1]);
&shr ($b,3);
&mov (@i[1],0x7); # 5-byte instruction!?
&and (@i[1],$b);
&shr ($b,3);
&xor ($hi,@T[0]);
&xor ($lo,&DWP(0,"esp",@i[0],4));
&mov (@i[0],0x7);
&and (@i[0],$b);
&shr ($b,3);
for($n=1;$n<9;$n++) {
&mov (@T[1],&DWP(0,"esp",@i[1],4));
&mov (@i[1],0x7);
&mov (@T[0],@T[1]);
&shl (@T[1],3*$n);
&and (@i[1],$b);
&shr (@T[0],32-3*$n);
&xor ($lo,@T[1]);
&shr ($b,3);
&xor ($hi,@T[0]);
push(@i,shift(@i)); push(@T,shift(@T));
}
&mov (@T[1],&DWP(0,"esp",@i[1],4));
&mov (@T[0],@T[1]);
&shl (@T[1],3*$n);
&mov (@i[1],&DWP(0,"esp",@i[0],4));
&shr (@T[0],32-3*$n); $n++;
&mov (@i[0],@i[1]);
&xor ($lo,@T[1]);
&shl (@i[1],3*$n);
&xor ($hi,@T[0]);
&shr (@i[0],32-3*$n);
&xor ($lo,@i[1]);
&xor ($hi,@i[0]);
&add ("esp",32+4);
&ret ();
&function_end_B("_mul_1x1_ialu");
# void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1, BN_ULONG b0);
&function_begin_B("bn_GF2m_mul_2x2");
if (!$x86only) {
&picmeup("edx","OPENSSL_ia32cap_P");
&mov ("eax",&DWP(0,"edx"));
&mov ("edx",&DWP(4,"edx"));
&test ("eax",1<<23); # check MMX bit
&jz (&label("ialu"));
if ($sse2) {
&test ("eax",1<<24); # check FXSR bit
&jz (&label("mmx"));
&test ("edx",1<<1); # check PCLMULQDQ bit
&jz (&label("mmx"));
&movups ("xmm0",&QWP(8,"esp"));
&shufps ("xmm0","xmm0",0b10110001);
&pclmulqdq ("xmm0","xmm0",1);
&mov ("eax",&DWP(4,"esp"));
&movups (&QWP(0,"eax"),"xmm0");
&ret ();
&set_label("mmx",16);
}
&push ("ebp");
&push ("ebx");
&push ("esi");
&push ("edi");
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&call ("_mul_1x1_mmx"); # a1·b1
&movq ("mm7",$R);
&mov ($a,&wparam(2));
&mov ($b,&wparam(4));
&call ("_mul_1x1_mmx"); # a0·b0
&movq ("mm6",$R);
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&xor ($a,&wparam(2));
&xor ($b,&wparam(4));
&call ("_mul_1x1_mmx"); # (a0+a1)·(b0+b1)
&pxor ($R,"mm7");
&mov ($a,&wparam(0));
&pxor ($R,"mm6"); # (a0+a1)·(b0+b1)-a1·b1-a0·b0
&movq ($A,$R);
&psllq ($R,32);
&pop ("edi");
&psrlq ($A,32);
&pop ("esi");
&pxor ($R,"mm6");
&pop ("ebx");
&pxor ($A,"mm7");
&movq (&QWP(0,$a),$R);
&pop ("ebp");
&movq (&QWP(8,$a),$A);
&emms ();
&ret ();
&set_label("ialu",16);
}
&push ("ebp");
&push ("ebx");
&push ("esi");
&push ("edi");
&stack_push(4+1);
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&call ("_mul_1x1_ialu"); # a1·b1
&mov (&DWP(8,"esp"),$lo);
&mov (&DWP(12,"esp"),$hi);
&mov ($a,&wparam(2));
&mov ($b,&wparam(4));
&call ("_mul_1x1_ialu"); # a0·b0
&mov (&DWP(0,"esp"),$lo);
&mov (&DWP(4,"esp"),$hi);
&mov ($a,&wparam(1));
&mov ($b,&wparam(3));
&xor ($a,&wparam(2));
&xor ($b,&wparam(4));
&call ("_mul_1x1_ialu"); # (a0+a1)·(b0+b1)
&mov ("ebp",&wparam(0));
@r=("ebx","ecx","edi","esi");
&mov (@r[0],&DWP(0,"esp"));
&mov (@r[1],&DWP(4,"esp"));
&mov (@r[2],&DWP(8,"esp"));
&mov (@r[3],&DWP(12,"esp"));
&xor ($lo,$hi);
&xor ($hi,@r[1]);
&xor ($lo,@r[0]);
&mov (&DWP(0,"ebp"),@r[0]);
&xor ($hi,@r[2]);
&mov (&DWP(12,"ebp"),@r[3]);
&xor ($lo,@r[3]);
&stack_pop(4+1);
&xor ($hi,@r[3]);
&pop ("edi");
&xor ($lo,$hi);
&pop ("esi");
&mov (&DWP(8,"ebp"),$hi);
&pop ("ebx");
&mov (&DWP(4,"ebp"),$lo);
&pop ("ebp");
&ret ();
&function_end_B("bn_GF2m_mul_2x2");
&asciz ("GF(2^m) Multiplication for x86, CRYPTOGAMS by <appro\@openssl.org>");
&asm_finish();
close STDOUT;