2016-05-17 18:51:34 +00:00
|
|
|
/*
|
2018-09-11 12:22:14 +00:00
|
|
|
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
1998-12-21 10:56:39 +00:00
|
|
|
*
|
2016-05-17 18:51:34 +00:00
|
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
|
|
* in the file LICENSE in the source distribution or at
|
|
|
|
* https://www.openssl.org/source/license.html
|
1998-12-21 10:56:39 +00:00
|
|
|
*/
|
|
|
|
|
2015-05-14 12:54:49 +00:00
|
|
|
#include "internal/constant_time_locl.h"
|
2014-08-28 17:43:49 +00:00
|
|
|
|
1998-12-21 10:56:39 +00:00
|
|
|
#include <stdio.h>
|
2015-05-14 14:56:48 +00:00
|
|
|
#include "internal/cryptlib.h"
|
1999-04-23 22:13:45 +00:00
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <openssl/rsa.h>
|
|
|
|
#include <openssl/rand.h>
|
1998-12-21 10:56:39 +00:00
|
|
|
|
1999-04-19 21:31:43 +00:00
|
|
|
int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
|
2015-01-22 03:40:55 +00:00
|
|
|
const unsigned char *from, int flen)
|
|
|
|
{
|
|
|
|
int j;
|
|
|
|
unsigned char *p;
|
|
|
|
|
|
|
|
if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_1,
|
|
|
|
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
2017-08-22 17:25:23 +00:00
|
|
|
return 0;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
p = (unsigned char *)to;
|
|
|
|
|
|
|
|
*(p++) = 0;
|
|
|
|
*(p++) = 1; /* Private Key BT (Block Type) */
|
|
|
|
|
|
|
|
/* pad out with 0xff data */
|
|
|
|
j = tlen - 3 - flen;
|
|
|
|
memset(p, 0xff, j);
|
|
|
|
p += j;
|
|
|
|
*(p++) = '\0';
|
|
|
|
memcpy(p, from, (unsigned int)flen);
|
2017-08-22 17:25:23 +00:00
|
|
|
return 1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1998-12-21 10:56:39 +00:00
|
|
|
|
1999-04-19 21:31:43 +00:00
|
|
|
int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
|
2015-01-22 03:40:55 +00:00
|
|
|
const unsigned char *from, int flen,
|
|
|
|
int num)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
const unsigned char *p;
|
|
|
|
|
|
|
|
p = from;
|
2016-02-02 17:03:33 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The format is
|
|
|
|
* 00 || 01 || PS || 00 || D
|
|
|
|
* PS - padding string, at least 8 bytes of FF
|
|
|
|
* D - data.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (num < 11)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/* Accept inputs with and without the leading 0-byte. */
|
|
|
|
if (num == flen) {
|
|
|
|
if ((*p++) != 0x00) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
|
|
|
RSA_R_INVALID_PADDING);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
flen--;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((num != (flen + 1)) || (*(p++) != 0x01)) {
|
2015-01-22 03:40:55 +00:00
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
|
|
|
RSA_R_BLOCK_TYPE_IS_NOT_01);
|
2017-08-22 17:25:23 +00:00
|
|
|
return -1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/* scan over padding data */
|
|
|
|
j = flen - 1; /* one for type. */
|
|
|
|
for (i = 0; i < j; i++) {
|
|
|
|
if (*p != 0xff) { /* should decrypt to 0xff */
|
|
|
|
if (*p == 0) {
|
|
|
|
p++;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
|
|
|
RSA_R_BAD_FIXED_HEADER_DECRYPT);
|
2017-08-22 17:25:23 +00:00
|
|
|
return -1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (i == j) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
|
|
|
RSA_R_NULL_BEFORE_BLOCK_MISSING);
|
2017-08-22 17:25:23 +00:00
|
|
|
return -1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (i < 8) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1,
|
|
|
|
RSA_R_BAD_PAD_BYTE_COUNT);
|
2017-08-22 17:25:23 +00:00
|
|
|
return -1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
i++; /* Skip over the '\0' */
|
|
|
|
j -= i;
|
|
|
|
if (j > tlen) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_1, RSA_R_DATA_TOO_LARGE);
|
2017-08-22 17:25:23 +00:00
|
|
|
return -1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
memcpy(to, p, (unsigned int)j);
|
|
|
|
|
2017-08-22 17:25:23 +00:00
|
|
|
return j;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1998-12-21 10:56:39 +00:00
|
|
|
|
1999-04-19 21:31:43 +00:00
|
|
|
int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
|
2015-01-22 03:40:55 +00:00
|
|
|
const unsigned char *from, int flen)
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
unsigned char *p;
|
|
|
|
|
|
|
|
if (flen > (tlen - 11)) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_TYPE_2,
|
|
|
|
RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
2017-08-22 17:25:23 +00:00
|
|
|
return 0;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
p = (unsigned char *)to;
|
|
|
|
|
|
|
|
*(p++) = 0;
|
|
|
|
*(p++) = 2; /* Public Key BT (Block Type) */
|
|
|
|
|
|
|
|
/* pad out with non-zero random data */
|
|
|
|
j = tlen - 3 - flen;
|
|
|
|
|
|
|
|
if (RAND_bytes(p, j) <= 0)
|
2017-08-22 17:25:23 +00:00
|
|
|
return 0;
|
2015-01-22 03:40:55 +00:00
|
|
|
for (i = 0; i < j; i++) {
|
|
|
|
if (*p == '\0')
|
|
|
|
do {
|
|
|
|
if (RAND_bytes(p, 1) <= 0)
|
2017-08-22 17:25:23 +00:00
|
|
|
return 0;
|
2015-01-22 03:40:55 +00:00
|
|
|
} while (*p == '\0');
|
|
|
|
p++;
|
|
|
|
}
|
|
|
|
|
|
|
|
*(p++) = '\0';
|
|
|
|
|
|
|
|
memcpy(p, from, (unsigned int)flen);
|
2017-08-22 17:25:23 +00:00
|
|
|
return 1;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
1998-12-21 10:56:39 +00:00
|
|
|
|
1999-04-19 21:31:43 +00:00
|
|
|
int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
|
2015-01-22 03:40:55 +00:00
|
|
|
const unsigned char *from, int flen,
|
|
|
|
int num)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
/* |em| is the encoded message, zero-padded to exactly |num| bytes */
|
|
|
|
unsigned char *em = NULL;
|
2018-09-01 10:00:33 +00:00
|
|
|
unsigned int good, found_zero_byte, mask;
|
2015-01-22 03:40:55 +00:00
|
|
|
int zero_index = 0, msg_index, mlen = -1;
|
|
|
|
|
|
|
|
if (tlen < 0 || flen < 0)
|
|
|
|
return -1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
|
|
|
|
* section 7.2.2.
|
|
|
|
*/
|
|
|
|
|
2018-09-01 10:00:33 +00:00
|
|
|
if (flen > num || num < 11) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2,
|
|
|
|
RSA_R_PKCS_DECODING_ERROR);
|
|
|
|
return -1;
|
|
|
|
}
|
2015-01-22 03:40:55 +00:00
|
|
|
|
2018-09-01 10:00:33 +00:00
|
|
|
em = OPENSSL_malloc(num);
|
|
|
|
if (em == NULL) {
|
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, ERR_R_MALLOC_FAILURE);
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Caller is encouraged to pass zero-padded message created with
|
|
|
|
* BN_bn2binpad. Trouble is that since we can't read out of |from|'s
|
|
|
|
* bounds, it's impossible to have an invariant memory access pattern
|
|
|
|
* in case |from| was not zero-padded in advance.
|
|
|
|
*/
|
|
|
|
for (from += flen, em += num, i = 0; i < num; i++) {
|
|
|
|
mask = ~constant_time_is_zero(flen);
|
|
|
|
flen -= 1 & mask;
|
|
|
|
from -= 1 & mask;
|
|
|
|
*--em = *from & mask;
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|
2018-09-01 10:00:33 +00:00
|
|
|
from = em;
|
2015-01-22 03:40:55 +00:00
|
|
|
|
2018-02-04 14:24:54 +00:00
|
|
|
good = constant_time_is_zero(from[0]);
|
|
|
|
good &= constant_time_eq(from[1], 2);
|
2015-01-22 03:40:55 +00:00
|
|
|
|
2018-09-01 10:00:33 +00:00
|
|
|
/* scan over padding data */
|
2015-01-22 03:40:55 +00:00
|
|
|
found_zero_byte = 0;
|
|
|
|
for (i = 2; i < num; i++) {
|
2018-02-04 14:24:54 +00:00
|
|
|
unsigned int equals0 = constant_time_is_zero(from[i]);
|
2018-09-01 10:00:33 +00:00
|
|
|
|
|
|
|
zero_index = constant_time_select_int(~found_zero_byte & equals0,
|
|
|
|
i, zero_index);
|
2015-01-22 03:40:55 +00:00
|
|
|
found_zero_byte |= equals0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2018-02-04 14:24:54 +00:00
|
|
|
* PS must be at least 8 bytes long, and it starts two bytes into |from|.
|
2015-01-22 03:40:55 +00:00
|
|
|
* If we never found a 0-byte, then |zero_index| is 0 and the check
|
|
|
|
* also fails.
|
|
|
|
*/
|
2018-09-01 10:00:33 +00:00
|
|
|
good &= constant_time_ge(zero_index, 2 + 8);
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Skip the zero byte. This is incorrect if we never found a zero-byte
|
|
|
|
* but in this case we also do not copy the message out.
|
|
|
|
*/
|
|
|
|
msg_index = zero_index + 1;
|
|
|
|
mlen = num - msg_index;
|
|
|
|
|
|
|
|
/*
|
2018-09-01 10:00:33 +00:00
|
|
|
* For good measure, do this check in constant time as well.
|
2015-01-22 03:40:55 +00:00
|
|
|
*/
|
2018-09-01 10:00:33 +00:00
|
|
|
good &= constant_time_ge(tlen, mlen);
|
2015-01-22 03:40:55 +00:00
|
|
|
|
|
|
|
/*
|
2018-09-01 10:00:33 +00:00
|
|
|
* Even though we can't fake result's length, we can pretend copying
|
|
|
|
* |tlen| bytes where |mlen| bytes would be real. Last |tlen| of |num|
|
|
|
|
* bytes are viewed as circular buffer with start at |tlen|-|mlen'|,
|
|
|
|
* where |mlen'| is "saturated" |mlen| value. Deducing information
|
|
|
|
* about failure or |mlen| would take attacker's ability to observe
|
|
|
|
* memory access pattern with byte granularity *as it occurs*. It
|
|
|
|
* should be noted that failure is indistinguishable from normal
|
|
|
|
* operation if |tlen| is fixed by protocol.
|
2015-01-22 03:40:55 +00:00
|
|
|
*/
|
2018-09-01 10:00:33 +00:00
|
|
|
tlen = constant_time_select_int(constant_time_lt(num, tlen), num, tlen);
|
|
|
|
msg_index = constant_time_select_int(good, msg_index, num - tlen);
|
|
|
|
mlen = num - msg_index;
|
|
|
|
for (from += msg_index, mask = good, i = 0; i < tlen; i++) {
|
|
|
|
unsigned int equals = constant_time_eq(i, mlen);
|
2015-01-22 03:40:55 +00:00
|
|
|
|
2018-09-01 10:00:33 +00:00
|
|
|
from -= tlen & equals; /* if (i == mlen) rewind */
|
|
|
|
mask &= mask ^ equals; /* if (i == mlen) mask = 0 */
|
|
|
|
to[i] = constant_time_select_8(mask, from[i], to[i]);
|
|
|
|
}
|
2015-01-22 03:40:55 +00:00
|
|
|
|
2017-07-31 18:52:43 +00:00
|
|
|
OPENSSL_clear_free(em, num);
|
2018-09-01 10:00:33 +00:00
|
|
|
RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_TYPE_2, RSA_R_PKCS_DECODING_ERROR);
|
|
|
|
err_clear_last_constant_time(1 & good);
|
|
|
|
|
|
|
|
return constant_time_select_int(good, mlen, -1);
|
2015-01-22 03:40:55 +00:00
|
|
|
}
|