openssl/ssl/statem/statem_lib.c

2005 lines
62 KiB
C
Raw Normal View History

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
2000-02-25 14:47:38 +00:00
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
2000-02-25 14:47:38 +00:00
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include "../ssl_locl.h"
#include "statem_locl.h"
#include <openssl/buffer.h>
#include <openssl/objects.h>
#include <openssl/evp.h>
#include <openssl/x509.h>
/*
* send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or
* SSL3_RT_CHANGE_CIPHER_SPEC)
*/
int ssl3_do_write(SSL *s, int type)
{
int ret;
size_t written = 0;
ret = ssl3_write_bytes(s, type, &s->init_buf->data[s->init_off],
s->init_num, &written);
if (ret < 0)
return (-1);
if (type == SSL3_RT_HANDSHAKE)
/*
* should not be done for 'Hello Request's, but in that case we'll
* ignore the result anyway
*/
if (!ssl3_finish_mac(s,
(unsigned char *)&s->init_buf->data[s->init_off],
written))
return -1;
if (written == s->init_num) {
if (s->msg_callback)
s->msg_callback(1, s->version, type, s->init_buf->data,
(size_t)(s->init_off + s->init_num), s,
s->msg_callback_arg);
return (1);
}
s->init_off += written;
s->init_num -= written;
return (0);
}
int tls_close_construct_packet(SSL *s, WPACKET *pkt, int htype)
{
size_t msglen;
if ((htype != SSL3_MT_CHANGE_CIPHER_SPEC && !WPACKET_close(pkt))
|| !WPACKET_get_length(pkt, &msglen)
|| msglen > INT_MAX)
return 0;
s->init_num = (int)msglen;
s->init_off = 0;
return 1;
}
int tls_setup_handshake(SSL *s)
{
if (!ssl3_init_finished_mac(s))
return 0;
if (s->server) {
if (SSL_IS_FIRST_HANDSHAKE(s)) {
s->ctx->stats.sess_accept++;
} else if (!s->s3->send_connection_binding &&
!(s->options &
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
/*
* Server attempting to renegotiate with client that doesn't
* support secure renegotiation.
*/
SSLerr(SSL_F_TLS_SETUP_HANDSHAKE,
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE);
return 0;
} else {
s->ctx->stats.sess_accept_renegotiate++;
s->s3->tmp.cert_request = 0;
}
} else {
if (SSL_IS_FIRST_HANDSHAKE(s))
s->ctx->stats.sess_connect++;
else
s->ctx->stats.sess_connect_renegotiate++;
/* mark client_random uninitialized */
memset(s->s3->client_random, 0, sizeof(s->s3->client_random));
s->hit = 0;
s->s3->tmp.cert_req = 0;
if (SSL_IS_DTLS(s))
s->statem.use_timer = 1;
}
return 1;
}
/*
* Size of the to-be-signed TLS13 data, without the hash size itself:
* 64 bytes of value 32, 33 context bytes, 1 byte separator
*/
#define TLS13_TBS_START_SIZE 64
#define TLS13_TBS_PREAMBLE_SIZE (TLS13_TBS_START_SIZE + 33 + 1)
static int get_cert_verify_tbs_data(SSL *s, unsigned char *tls13tbs,
void **hdata, size_t *hdatalen)
{
static const char *servercontext = "TLS 1.3, server CertificateVerify";
static const char *clientcontext = "TLS 1.3, client CertificateVerify";
if (SSL_IS_TLS13(s)) {
size_t hashlen;
/* Set the first 64 bytes of to-be-signed data to octet 32 */
memset(tls13tbs, 32, TLS13_TBS_START_SIZE);
/* This copies the 33 bytes of context plus the 0 separator byte */
if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY
|| s->statem.hand_state == TLS_ST_SW_CERT_VRFY)
strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, servercontext);
else
strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, clientcontext);
/*
* If we're currently reading then we need to use the saved handshake
* hash value. We can't use the current handshake hash state because
* that includes the CertVerify itself.
*/
if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY
|| s->statem.hand_state == TLS_ST_SR_CERT_VRFY) {
memcpy(tls13tbs + TLS13_TBS_PREAMBLE_SIZE, s->cert_verify_hash,
s->cert_verify_hash_len);
hashlen = s->cert_verify_hash_len;
} else if (!ssl_handshake_hash(s, tls13tbs + TLS13_TBS_PREAMBLE_SIZE,
EVP_MAX_MD_SIZE, &hashlen)) {
return 0;
}
*hdata = tls13tbs;
*hdatalen = TLS13_TBS_PREAMBLE_SIZE + hashlen;
} else {
size_t retlen;
retlen = BIO_get_mem_data(s->s3->handshake_buffer, hdata);
if (retlen <= 0)
return 0;
*hdatalen = retlen;
}
return 1;
}
int tls_construct_cert_verify(SSL *s, WPACKET *pkt)
{
EVP_PKEY *pkey = NULL;
const EVP_MD *md = NULL;
EVP_MD_CTX *mctx = NULL;
EVP_PKEY_CTX *pctx = NULL;
size_t hdatalen = 0, siglen = 0;
void *hdata;
unsigned char *sig = NULL;
unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE];
const SIGALG_LOOKUP *lu = s->s3->tmp.sigalg;
if (lu == NULL || s->s3->tmp.cert == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_INTERNAL_ERROR);
goto err;
}
pkey = s->s3->tmp.cert->privatekey;
md = ssl_md(lu->hash_idx);
if (pkey == NULL || md == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_INTERNAL_ERROR);
goto err;
}
mctx = EVP_MD_CTX_new();
if (mctx == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_MALLOC_FAILURE);
goto err;
}
/* Get the data to be signed */
if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_INTERNAL_ERROR);
goto err;
}
if (SSL_USE_SIGALGS(s) && !WPACKET_put_bytes_u16(pkt, lu->sigalg)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_INTERNAL_ERROR);
goto err;
}
siglen = EVP_PKEY_size(pkey);
sig = OPENSSL_malloc(siglen);
if (sig == NULL) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_MALLOC_FAILURE);
goto err;
}
if (EVP_DigestSignInit(mctx, &pctx, md, NULL, pkey) <= 0
|| EVP_DigestSignUpdate(mctx, hdata, hdatalen) <= 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_EVP_LIB);
goto err;
}
if (lu->sig == EVP_PKEY_RSA_PSS) {
if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0
|| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx,
RSA_PSS_SALTLEN_DIGEST) <= 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_EVP_LIB);
goto err;
}
} else if (s->version == SSL3_VERSION) {
if (!EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET,
(int)s->session->master_key_length,
s->session->master_key)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_EVP_LIB);
goto err;
}
}
if (EVP_DigestSignFinal(mctx, sig, &siglen) <= 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_EVP_LIB);
goto err;
}
#ifndef OPENSSL_NO_GOST
{
int pktype = lu->sig;
if (pktype == NID_id_GostR3410_2001
|| pktype == NID_id_GostR3410_2012_256
|| pktype == NID_id_GostR3410_2012_512)
BUF_reverse(sig, NULL, siglen);
}
#endif
if (!WPACKET_sub_memcpy_u16(pkt, sig, siglen)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CERT_VERIFY, ERR_R_INTERNAL_ERROR);
goto err;
}
/* Digest cached records and discard handshake buffer */
if (!ssl3_digest_cached_records(s, 0))
goto err;
OPENSSL_free(sig);
EVP_MD_CTX_free(mctx);
return 1;
err:
OPENSSL_free(sig);
EVP_MD_CTX_free(mctx);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
MSG_PROCESS_RETURN tls_process_cert_verify(SSL *s, PACKET *pkt)
{
EVP_PKEY *pkey = NULL;
const unsigned char *data;
#ifndef OPENSSL_NO_GOST
unsigned char *gost_data = NULL;
#endif
int al = SSL_AD_INTERNAL_ERROR, ret = MSG_PROCESS_ERROR;
int type = 0, j, pktype;
unsigned int len;
X509 *peer;
const EVP_MD *md = NULL;
size_t hdatalen = 0;
void *hdata;
unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE];
EVP_MD_CTX *mctx = EVP_MD_CTX_new();
EVP_PKEY_CTX *pctx = NULL;
if (mctx == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, ERR_R_MALLOC_FAILURE);
goto f_err;
}
peer = s->session->peer;
pkey = X509_get0_pubkey(peer);
if (pkey == NULL) {
al = SSL_AD_INTERNAL_ERROR;
goto f_err;
}
pktype = EVP_PKEY_id(pkey);
type = X509_certificate_type(peer, pkey);
if (!(type & EVP_PKT_SIGN)) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY,
SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE);
al = SSL_AD_ILLEGAL_PARAMETER;
goto f_err;
}
/* Check for broken implementations of GOST ciphersuites */
/*
* If key is GOST and n is exactly 64, it is bare signature without
* length field (CryptoPro implementations at least till CSP 4.0)
*/
#ifndef OPENSSL_NO_GOST
if (PACKET_remaining(pkt) == 64
&& EVP_PKEY_id(pkey) == NID_id_GostR3410_2001) {
len = 64;
} else
#endif
{
if (SSL_USE_SIGALGS(s)) {
int rv;
unsigned int sigalg;
if (!PACKET_get_net_2(pkt, &sigalg)) {
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
rv = tls12_check_peer_sigalg(s, sigalg, pkey);
if (rv == -1) {
goto f_err;
} else if (rv == 0) {
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
#ifdef SSL_DEBUG
fprintf(stderr, "USING TLSv1.2 HASH %s\n", EVP_MD_name(md));
#endif
} else if (!tls1_set_peer_legacy_sigalg(s, pkey)) {
al = SSL_AD_INTERNAL_ERROR;
goto f_err;
}
md = ssl_md(s->s3->tmp.peer_sigalg->hash_idx);
if (!PACKET_get_net_2(pkt, &len)) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, SSL_R_LENGTH_MISMATCH);
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
}
j = EVP_PKEY_size(pkey);
if (((int)len > j) || ((int)PACKET_remaining(pkt) > j)
|| (PACKET_remaining(pkt) == 0)) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, SSL_R_WRONG_SIGNATURE_SIZE);
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
if (!PACKET_get_bytes(pkt, &data, len)) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, SSL_R_LENGTH_MISMATCH);
al = SSL_AD_DECODE_ERROR;
goto f_err;
}
if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, ERR_R_INTERNAL_ERROR);
goto f_err;
}
#ifdef SSL_DEBUG
fprintf(stderr, "Using client verify alg %s\n", EVP_MD_name(md));
#endif
if (EVP_DigestVerifyInit(mctx, &pctx, md, NULL, pkey) <= 0
|| EVP_DigestVerifyUpdate(mctx, hdata, hdatalen) <= 0) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, ERR_R_EVP_LIB);
goto f_err;
}
#ifndef OPENSSL_NO_GOST
{
if (pktype == NID_id_GostR3410_2001
|| pktype == NID_id_GostR3410_2012_256
|| pktype == NID_id_GostR3410_2012_512) {
if ((gost_data = OPENSSL_malloc(len)) == NULL) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, ERR_R_MALLOC_FAILURE);
goto f_err;
}
BUF_reverse(gost_data, data, len);
data = gost_data;
}
}
#endif
if (SSL_USE_PSS(s)) {
if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0
|| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx,
RSA_PSS_SALTLEN_DIGEST) <= 0) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, ERR_R_EVP_LIB);
goto f_err;
}
} else if (s->version == SSL3_VERSION
&& !EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET,
(int)s->session->master_key_length,
s->session->master_key)) {
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, ERR_R_EVP_LIB);
goto f_err;
}
if (EVP_DigestVerifyFinal(mctx, data, len) <= 0) {
al = SSL_AD_DECRYPT_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CERT_VERIFY, SSL_R_BAD_SIGNATURE);
goto f_err;
}
if (SSL_IS_TLS13(s))
ret = MSG_PROCESS_CONTINUE_READING;
else
ret = MSG_PROCESS_CONTINUE_PROCESSING;
if (0) {
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
ossl_statem_set_error(s);
}
BIO_free(s->s3->handshake_buffer);
s->s3->handshake_buffer = NULL;
EVP_MD_CTX_free(mctx);
#ifndef OPENSSL_NO_GOST
OPENSSL_free(gost_data);
#endif
return ret;
}
int tls_construct_finished(SSL *s, WPACKET *pkt)
{
size_t finish_md_len;
const char *sender;
size_t slen;
/* This is a real handshake so make sure we clean it up at the end */
if (!s->server)
s->statem.cleanuphand = 1;
/*
* We only change the keys if we didn't already do this when we sent the
* client certificate
*/
if (SSL_IS_TLS13(s)
&& !s->server
&& s->s3->tmp.cert_req == 0
&& (!s->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_HANDSHAKE | SSL3_CHANGE_CIPHER_CLIENT_WRITE))) {
SSLerr(SSL_F_TLS_CONSTRUCT_FINISHED, SSL_R_CANNOT_CHANGE_CIPHER);
goto err;
}
if (s->server) {
sender = s->method->ssl3_enc->server_finished_label;
slen = s->method->ssl3_enc->server_finished_label_len;
} else {
sender = s->method->ssl3_enc->client_finished_label;
slen = s->method->ssl3_enc->client_finished_label_len;
}
finish_md_len = s->method->ssl3_enc->final_finish_mac(s,
sender, slen,
s->s3->tmp.finish_md);
if (finish_md_len == 0) {
SSLerr(SSL_F_TLS_CONSTRUCT_FINISHED, ERR_R_INTERNAL_ERROR);
goto err;
}
s->s3->tmp.finish_md_len = finish_md_len;
if (!WPACKET_memcpy(pkt, s->s3->tmp.finish_md, finish_md_len)) {
SSLerr(SSL_F_TLS_CONSTRUCT_FINISHED, ERR_R_INTERNAL_ERROR);
goto err;
}
/*
* Log the master secret, if logging is enabled. We don't log it for
* TLSv1.3: there's a different key schedule for that.
*/
if (!SSL_IS_TLS13(s) && !ssl_log_secret(s, MASTER_SECRET_LABEL,
s->session->master_key,
s->session->master_key_length))
return 0;
/*
* Copy the finished so we can use it for renegotiation checks
*/
if (!s->server) {
OPENSSL_assert(finish_md_len <= EVP_MAX_MD_SIZE);
memcpy(s->s3->previous_client_finished, s->s3->tmp.finish_md,
finish_md_len);
s->s3->previous_client_finished_len = finish_md_len;
} else {
OPENSSL_assert(finish_md_len <= EVP_MAX_MD_SIZE);
memcpy(s->s3->previous_server_finished, s->s3->tmp.finish_md,
finish_md_len);
s->s3->previous_server_finished_len = finish_md_len;
}
return 1;
err:
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
int tls_construct_key_update(SSL *s, WPACKET *pkt)
{
if (!WPACKET_put_bytes_u8(pkt, s->key_update)) {
SSLerr(SSL_F_TLS_CONSTRUCT_KEY_UPDATE, ERR_R_INTERNAL_ERROR);
goto err;
}
s->key_update = SSL_KEY_UPDATE_NONE;
return 1;
err:
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
MSG_PROCESS_RETURN tls_process_key_update(SSL *s, PACKET *pkt)
{
int al;
unsigned int updatetype;
s->key_update_count++;
if (s->key_update_count > MAX_KEY_UPDATE_MESSAGES) {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_PROCESS_KEY_UPDATE, SSL_R_TOO_MANY_KEY_UPDATES);
goto err;
}
/*
* A KeyUpdate message signals a key change so the end of the message must
* be on a record boundary.
*/
if (RECORD_LAYER_processed_read_pending(&s->rlayer)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_TLS_PROCESS_KEY_UPDATE, SSL_R_NOT_ON_RECORD_BOUNDARY);
goto err;
}
if (!PACKET_get_1(pkt, &updatetype)
|| PACKET_remaining(pkt) != 0
|| (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED
&& updatetype != SSL_KEY_UPDATE_REQUESTED)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_KEY_UPDATE, SSL_R_BAD_KEY_UPDATE);
goto err;
}
/*
* If we get a request for us to update our sending keys too then, we need
* to additionally send a KeyUpdate message. However that message should
* not also request an update (otherwise we get into an infinite loop).
*/
if (updatetype == SSL_KEY_UPDATE_REQUESTED)
s->key_update = SSL_KEY_UPDATE_NOT_REQUESTED;
if (!tls13_update_key(s, 0)) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_KEY_UPDATE, ERR_R_INTERNAL_ERROR);
goto err;
}
return MSG_PROCESS_FINISHED_READING;
err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
ossl_statem_set_error(s);
return MSG_PROCESS_ERROR;
}
2010-09-05 17:14:01 +00:00
#ifndef OPENSSL_NO_NEXTPROTONEG
/*
* ssl3_take_mac calculates the Finished MAC for the handshakes messages seen
* to far.
*/
2010-07-28 10:06:55 +00:00
static void ssl3_take_mac(SSL *s)
{
const char *sender;
size_t slen;
/*
* If no new cipher setup return immediately: other functions will set
* the appropriate error.
*/
if (s->s3->tmp.new_cipher == NULL)
return;
if (!s->server) {
sender = s->method->ssl3_enc->server_finished_label;
slen = s->method->ssl3_enc->server_finished_label_len;
} else {
sender = s->method->ssl3_enc->client_finished_label;
slen = s->method->ssl3_enc->client_finished_label_len;
}
s->s3->tmp.peer_finish_md_len = s->method->ssl3_enc->final_finish_mac(s,
sender,
slen,
s->s3->tmp.peer_finish_md);
}
2010-07-28 10:06:55 +00:00
#endif
MSG_PROCESS_RETURN tls_process_change_cipher_spec(SSL *s, PACKET *pkt)
{
int al;
size_t remain;
remain = PACKET_remaining(pkt);
/*
* 'Change Cipher Spec' is just a single byte, which should already have
* been consumed by ssl_get_message() so there should be no bytes left,
* unless we're using DTLS1_BAD_VER, which has an extra 2 bytes
*/
if (SSL_IS_DTLS(s)) {
if ((s->version == DTLS1_BAD_VER
&& remain != DTLS1_CCS_HEADER_LENGTH + 1)
|| (s->version != DTLS1_BAD_VER
&& remain != DTLS1_CCS_HEADER_LENGTH - 1)) {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC,
SSL_R_BAD_CHANGE_CIPHER_SPEC);
goto f_err;
}
} else {
if (remain != 0) {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC,
SSL_R_BAD_CHANGE_CIPHER_SPEC);
goto f_err;
}
}
/* Check we have a cipher to change to */
if (s->s3->tmp.new_cipher == NULL) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC, SSL_R_CCS_RECEIVED_EARLY);
goto f_err;
}
s->s3->change_cipher_spec = 1;
if (!ssl3_do_change_cipher_spec(s)) {
al = SSL_AD_INTERNAL_ERROR;
SSLerr(SSL_F_TLS_PROCESS_CHANGE_CIPHER_SPEC, ERR_R_INTERNAL_ERROR);
goto f_err;
}
if (SSL_IS_DTLS(s)) {
dtls1_reset_seq_numbers(s, SSL3_CC_READ);
if (s->version == DTLS1_BAD_VER)
s->d1->handshake_read_seq++;
#ifndef OPENSSL_NO_SCTP
/*
* Remember that a CCS has been received, so that an old key of
* SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no
* SCTP is used
*/
BIO_ctrl(SSL_get_wbio(s), BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL);
#endif
}
return MSG_PROCESS_CONTINUE_READING;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
ossl_statem_set_error(s);
return MSG_PROCESS_ERROR;
}
MSG_PROCESS_RETURN tls_process_finished(SSL *s, PACKET *pkt)
{
int al = SSL_AD_INTERNAL_ERROR;
size_t md_len;
/* This is a real handshake so make sure we clean it up at the end */
if (s->server)
s->statem.cleanuphand = 1;
/*
* In TLSv1.3 a Finished message signals a key change so the end of the
* message must be on a record boundary.
*/
if (SSL_IS_TLS13(s) && RECORD_LAYER_processed_read_pending(&s->rlayer)) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_NOT_ON_RECORD_BOUNDARY);
goto f_err;
}
/* If this occurs, we have missed a message */
if (!SSL_IS_TLS13(s) && !s->s3->change_cipher_spec) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_GOT_A_FIN_BEFORE_A_CCS);
goto f_err;
}
s->s3->change_cipher_spec = 0;
md_len = s->s3->tmp.peer_finish_md_len;
if (md_len != PACKET_remaining(pkt)) {
al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_BAD_DIGEST_LENGTH);
goto f_err;
}
if (CRYPTO_memcmp(PACKET_data(pkt), s->s3->tmp.peer_finish_md,
md_len) != 0) {
al = SSL_AD_DECRYPT_ERROR;
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_DIGEST_CHECK_FAILED);
goto f_err;
}
/*
* Copy the finished so we can use it for renegotiation checks
*/
if (s->server) {
OPENSSL_assert(md_len <= EVP_MAX_MD_SIZE);
memcpy(s->s3->previous_client_finished, s->s3->tmp.peer_finish_md,
md_len);
s->s3->previous_client_finished_len = md_len;
} else {
OPENSSL_assert(md_len <= EVP_MAX_MD_SIZE);
memcpy(s->s3->previous_server_finished, s->s3->tmp.peer_finish_md,
md_len);
s->s3->previous_server_finished_len = md_len;
}
/*
* In TLS1.3 we also have to change cipher state and do any final processing
* of the initial server flight (if we are a client)
*/
if (SSL_IS_TLS13(s)) {
if (s->server) {
if (!s->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_SERVER_READ)) {
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_CANNOT_CHANGE_CIPHER);
goto f_err;
}
} else {
if (!s->method->ssl3_enc->generate_master_secret(s,
s->master_secret, s->handshake_secret, 0,
&s->session->master_key_length)) {
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_CANNOT_CHANGE_CIPHER);
goto f_err;
}
if (!s->method->ssl3_enc->change_cipher_state(s,
SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_CLIENT_READ)) {
SSLerr(SSL_F_TLS_PROCESS_FINISHED, SSL_R_CANNOT_CHANGE_CIPHER);
goto f_err;
}
if (!tls_process_initial_server_flight(s, &al))
goto f_err;
}
}
return MSG_PROCESS_FINISHED_READING;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
ossl_statem_set_error(s);
return MSG_PROCESS_ERROR;
}
int tls_construct_change_cipher_spec(SSL *s, WPACKET *pkt)
{
if (!WPACKET_put_bytes_u8(pkt, SSL3_MT_CCS)) {
SSLerr(SSL_F_TLS_CONSTRUCT_CHANGE_CIPHER_SPEC, ERR_R_INTERNAL_ERROR);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return 0;
}
return 1;
}
/* Add a certificate to the WPACKET */
static int ssl_add_cert_to_wpacket(SSL *s, WPACKET *pkt, X509 *x, int chain,
int *al)
{
int len;
unsigned char *outbytes;
len = i2d_X509(x, NULL);
if (len < 0) {
SSLerr(SSL_F_SSL_ADD_CERT_TO_WPACKET, ERR_R_BUF_LIB);
*al = SSL_AD_INTERNAL_ERROR;
return 0;
}
if (!WPACKET_sub_allocate_bytes_u24(pkt, len, &outbytes)
|| i2d_X509(x, &outbytes) != len) {
SSLerr(SSL_F_SSL_ADD_CERT_TO_WPACKET, ERR_R_INTERNAL_ERROR);
*al = SSL_AD_INTERNAL_ERROR;
return 0;
}
if (SSL_IS_TLS13(s)
&& !tls_construct_extensions(s, pkt, EXT_TLS1_3_CERTIFICATE, x,
chain, al))
return 0;
return 1;
}
/* Add certificate chain to provided WPACKET */
static int ssl_add_cert_chain(SSL *s, WPACKET *pkt, CERT_PKEY *cpk, int *al)
{
int i, chain_count;
X509 *x;
STACK_OF(X509) *extra_certs;
STACK_OF(X509) *chain = NULL;
X509_STORE *chain_store;
int tmpal = SSL_AD_INTERNAL_ERROR;
if (cpk == NULL || cpk->x509 == NULL)
return 1;
x = cpk->x509;
/*
* If we have a certificate specific chain use it, else use parent ctx.
*/
if (cpk->chain != NULL)
extra_certs = cpk->chain;
else
extra_certs = s->ctx->extra_certs;
if ((s->mode & SSL_MODE_NO_AUTO_CHAIN) || extra_certs)
chain_store = NULL;
else if (s->cert->chain_store)
chain_store = s->cert->chain_store;
else
chain_store = s->ctx->cert_store;
if (chain_store != NULL) {
X509_STORE_CTX *xs_ctx = X509_STORE_CTX_new();
if (xs_ctx == NULL) {
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!X509_STORE_CTX_init(xs_ctx, chain_store, x, NULL)) {
X509_STORE_CTX_free(xs_ctx);
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, ERR_R_X509_LIB);
goto err;
}
/*
* It is valid for the chain not to be complete (because normally we
* don't include the root cert in the chain). Therefore we deliberately
* ignore the error return from this call. We're not actually verifying
* the cert - we're just building as much of the chain as we can
*/
(void)X509_verify_cert(xs_ctx);
/* Don't leave errors in the queue */
ERR_clear_error();
chain = X509_STORE_CTX_get0_chain(xs_ctx);
i = ssl_security_cert_chain(s, chain, NULL, 0);
if (i != 1) {
#if 0
/* Dummy error calls so mkerr generates them */
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, SSL_R_EE_KEY_TOO_SMALL);
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, SSL_R_CA_KEY_TOO_SMALL);
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, SSL_R_CA_MD_TOO_WEAK);
#endif
X509_STORE_CTX_free(xs_ctx);
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, i);
goto err;
}
chain_count = sk_X509_num(chain);
for (i = 0; i < chain_count; i++) {
x = sk_X509_value(chain, i);
if (!ssl_add_cert_to_wpacket(s, pkt, x, i, &tmpal)) {
X509_STORE_CTX_free(xs_ctx);
goto err;
}
}
X509_STORE_CTX_free(xs_ctx);
} else {
i = ssl_security_cert_chain(s, extra_certs, x, 0);
if (i != 1) {
SSLerr(SSL_F_SSL_ADD_CERT_CHAIN, i);
goto err;
}
if (!ssl_add_cert_to_wpacket(s, pkt, x, 0, &tmpal))
goto err;
for (i = 0; i < sk_X509_num(extra_certs); i++) {
x = sk_X509_value(extra_certs, i);
if (!ssl_add_cert_to_wpacket(s, pkt, x, i + 1, &tmpal))
goto err;
}
}
return 1;
err:
*al = tmpal;
return 0;
}
unsigned long ssl3_output_cert_chain(SSL *s, WPACKET *pkt, CERT_PKEY *cpk,
int *al)
{
int tmpal = SSL_AD_INTERNAL_ERROR;
if (!WPACKET_start_sub_packet_u24(pkt)
|| !ssl_add_cert_chain(s, pkt, cpk, &tmpal)
|| !WPACKET_close(pkt)) {
SSLerr(SSL_F_SSL3_OUTPUT_CERT_CHAIN, ERR_R_INTERNAL_ERROR);
*al = tmpal;
return 0;
}
return 1;
}
/*
* Tidy up after the end of a handshake. In the case of SCTP this may result
* in NBIO events. If |clearbufs| is set then init_buf and the wbio buffer is
* freed up as well.
*/
WORK_STATE tls_finish_handshake(SSL *s, WORK_STATE wst, int clearbufs)
{
void (*cb) (const SSL *ssl, int type, int val) = NULL;
#ifndef OPENSSL_NO_SCTP
if (SSL_IS_DTLS(s) && BIO_dgram_is_sctp(SSL_get_wbio(s))) {
WORK_STATE ret;
ret = dtls_wait_for_dry(s);
if (ret != WORK_FINISHED_CONTINUE)
return ret;
}
#endif
if (clearbufs) {
if (!SSL_IS_DTLS(s)) {
/*
* We don't do this in DTLS because we may still need the init_buf
* in case there are any unexpected retransmits
*/
BUF_MEM_free(s->init_buf);
s->init_buf = NULL;
}
ssl_free_wbio_buffer(s);
s->init_num = 0;
}
if (s->statem.cleanuphand) {
/* skipped if we just sent a HelloRequest */
s->renegotiate = 0;
s->new_session = 0;
s->statem.cleanuphand = 0;
ssl3_cleanup_key_block(s);
if (s->server) {
ssl_update_cache(s, SSL_SESS_CACHE_SERVER);
s->ctx->stats.sess_accept_good++;
s->handshake_func = ossl_statem_accept;
} else {
ssl_update_cache(s, SSL_SESS_CACHE_CLIENT);
if (s->hit)
s->ctx->stats.sess_hit++;
s->handshake_func = ossl_statem_connect;
s->ctx->stats.sess_connect_good++;
}
if (s->info_callback != NULL)
cb = s->info_callback;
else if (s->ctx->info_callback != NULL)
cb = s->ctx->info_callback;
if (cb != NULL)
cb(s, SSL_CB_HANDSHAKE_DONE, 1);
if (SSL_IS_DTLS(s)) {
/* done with handshaking */
s->d1->handshake_read_seq = 0;
s->d1->handshake_write_seq = 0;
s->d1->next_handshake_write_seq = 0;
Fix DTLS buffered message DoS attack DTLS can handle out of order record delivery. Additionally since handshake messages can be bigger than will fit into a single packet, the messages can be fragmented across multiple records (as with normal TLS). That means that the messages can arrive mixed up, and we have to reassemble them. We keep a queue of buffered messages that are "from the future", i.e. messages we're not ready to deal with yet but have arrived early. The messages held there may not be full yet - they could be one or more fragments that are still in the process of being reassembled. The code assumes that we will eventually complete the reassembly and when that occurs the complete message is removed from the queue at the point that we need to use it. However, DTLS is also tolerant of packet loss. To get around that DTLS messages can be retransmitted. If we receive a full (non-fragmented) message from the peer after previously having received a fragment of that message, then we ignore the message in the queue and just use the non-fragmented version. At that point the queued message will never get removed. Additionally the peer could send "future" messages that we never get to in order to complete the handshake. Each message has a sequence number (starting from 0). We will accept a message fragment for the current message sequence number, or for any sequence up to 10 into the future. However if the Finished message has a sequence number of 2, anything greater than that in the queue is just left there. So, in those two ways we can end up with "orphaned" data in the queue that will never get removed - except when the connection is closed. At that point all the queues are flushed. An attacker could seek to exploit this by filling up the queues with lots of large messages that are never going to be used in order to attempt a DoS by memory exhaustion. I will assume that we are only concerned with servers here. It does not seem reasonable to be concerned about a memory exhaustion attack on a client. They are unlikely to process enough connections for this to be an issue. A "long" handshake with many messages might be 5 messages long (in the incoming direction), e.g. ClientHello, Certificate, ClientKeyExchange, CertificateVerify, Finished. So this would be message sequence numbers 0 to 4. Additionally we can buffer up to 10 messages in the future. Therefore the maximum number of messages that an attacker could send that could get orphaned would typically be 15. The maximum size that a DTLS message is allowed to be is defined by max_cert_list, which by default is 100k. Therefore the maximum amount of "orphaned" memory per connection is 1500k. Message sequence numbers get reset after the Finished message, so renegotiation will not extend the maximum number of messages that can be orphaned per connection. As noted above, the queues do get cleared when the connection is closed. Therefore in order to mount an effective attack, an attacker would have to open many simultaneous connections. Issue reported by Quan Luo. CVE-2016-2179 Reviewed-by: Richard Levitte <levitte@openssl.org>
2016-06-30 12:17:08 +00:00
dtls1_clear_received_buffer(s);
}
}
/*
* If we've not cleared the buffers its because we've got more work to do,
* so continue.
*/
if (!clearbufs)
return WORK_FINISHED_CONTINUE;
ossl_statem_set_in_init(s, 0);
return WORK_FINISHED_STOP;
}
int tls_get_message_header(SSL *s, int *mt)
{
/* s->init_num < SSL3_HM_HEADER_LENGTH */
int skip_message, i, recvd_type, al;
unsigned char *p;
size_t l, readbytes;
p = (unsigned char *)s->init_buf->data;
do {
while (s->init_num < SSL3_HM_HEADER_LENGTH) {
i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, &recvd_type,
&p[s->init_num],
SSL3_HM_HEADER_LENGTH - s->init_num,
0, &readbytes);
if (i <= 0) {
s->rwstate = SSL_READING;
return 0;
}
if (recvd_type == SSL3_RT_CHANGE_CIPHER_SPEC) {
/*
* A ChangeCipherSpec must be a single byte and may not occur
* in the middle of a handshake message.
*/
if (s->init_num != 0 || readbytes != 1 || p[0] != SSL3_MT_CCS) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_TLS_GET_MESSAGE_HEADER,
SSL_R_BAD_CHANGE_CIPHER_SPEC);
goto f_err;
}
s->s3->tmp.message_type = *mt = SSL3_MT_CHANGE_CIPHER_SPEC;
s->init_num = readbytes - 1;
s->init_msg = s->init_buf->data;
s->s3->tmp.message_size = readbytes;
return 1;
} else if (recvd_type != SSL3_RT_HANDSHAKE) {
al = SSL_AD_UNEXPECTED_MESSAGE;
SSLerr(SSL_F_TLS_GET_MESSAGE_HEADER, SSL_R_CCS_RECEIVED_EARLY);
goto f_err;
}
s->init_num += readbytes;
}
skip_message = 0;
if (!s->server)
if (s->statem.hand_state != TLS_ST_OK
&& p[0] == SSL3_MT_HELLO_REQUEST)
/*
* The server may always send 'Hello Request' messages --
* we are doing a handshake anyway now, so ignore them if
* their format is correct. Does not count for 'Finished'
* MAC.
*/
if (p[1] == 0 && p[2] == 0 && p[3] == 0) {
s->init_num = 0;
skip_message = 1;
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE,
p, SSL3_HM_HEADER_LENGTH, s,
s->msg_callback_arg);
}
} while (skip_message);
/* s->init_num == SSL3_HM_HEADER_LENGTH */
*mt = *p;
s->s3->tmp.message_type = *(p++);
if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) {
/*
* Only happens with SSLv3+ in an SSLv2 backward compatible
* ClientHello
*
* Total message size is the remaining record bytes to read
* plus the SSL3_HM_HEADER_LENGTH bytes that we already read
*/
l = RECORD_LAYER_get_rrec_length(&s->rlayer)
+ SSL3_HM_HEADER_LENGTH;
s->s3->tmp.message_size = l;
s->init_msg = s->init_buf->data;
s->init_num = SSL3_HM_HEADER_LENGTH;
} else {
n2l3(p, l);
/* BUF_MEM_grow takes an 'int' parameter */
if (l > (INT_MAX - SSL3_HM_HEADER_LENGTH)) {
al = SSL_AD_ILLEGAL_PARAMETER;
SSLerr(SSL_F_TLS_GET_MESSAGE_HEADER, SSL_R_EXCESSIVE_MESSAGE_SIZE);
goto f_err;
}
s->s3->tmp.message_size = l;
s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH;
s->init_num = 0;
}
return 1;
f_err:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return 0;
}
int tls_get_message_body(SSL *s, size_t *len)
{
size_t n, readbytes;
unsigned char *p;
int i;
if (s->s3->tmp.message_type == SSL3_MT_CHANGE_CIPHER_SPEC) {
/* We've already read everything in */
*len = (unsigned long)s->init_num;
return 1;
}
p = s->init_msg;
n = s->s3->tmp.message_size - s->init_num;
while (n > 0) {
i = s->method->ssl_read_bytes(s, SSL3_RT_HANDSHAKE, NULL,
&p[s->init_num], n, 0, &readbytes);
if (i <= 0) {
s->rwstate = SSL_READING;
*len = 0;
return 0;
}
s->init_num += readbytes;
n -= readbytes;
}
2010-07-28 10:06:55 +00:00
2010-09-05 17:14:01 +00:00
#ifndef OPENSSL_NO_NEXTPROTONEG
/*
* If receiving Finished, record MAC of prior handshake messages for
* Finished verification.
*/
if (*s->init_buf->data == SSL3_MT_FINISHED)
ssl3_take_mac(s);
2010-07-28 10:06:55 +00:00
#endif
/* Feed this message into MAC computation. */
if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) {
if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data,
s->init_num)) {
SSLerr(SSL_F_TLS_GET_MESSAGE_BODY, ERR_R_EVP_LIB);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
*len = 0;
return 0;
}
if (s->msg_callback)
s->msg_callback(0, SSL2_VERSION, 0, s->init_buf->data,
(size_t)s->init_num, s, s->msg_callback_arg);
} else {
/*
* We defer feeding in the HRR until later. We'll do it as part of
* processing the message
*/
if (s->s3->tmp.message_type != SSL3_MT_HELLO_RETRY_REQUEST
&& !ssl3_finish_mac(s, (unsigned char *)s->init_buf->data,
s->init_num + SSL3_HM_HEADER_LENGTH)) {
SSLerr(SSL_F_TLS_GET_MESSAGE_BODY, ERR_R_EVP_LIB);
ssl3_send_alert(s, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
*len = 0;
return 0;
}
if (s->msg_callback)
s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data,
(size_t)s->init_num + SSL3_HM_HEADER_LENGTH, s,
s->msg_callback_arg);
}
*len = s->init_num;
return 1;
}
int ssl_cert_type(const X509 *x, const EVP_PKEY *pk)
{
if (pk == NULL && (pk = X509_get0_pubkey(x)) == NULL)
return -1;
switch (EVP_PKEY_id(pk)) {
default:
return -1;
case EVP_PKEY_RSA:
return SSL_PKEY_RSA;
case EVP_PKEY_DSA:
return SSL_PKEY_DSA_SIGN;
#ifndef OPENSSL_NO_EC
case EVP_PKEY_EC:
return SSL_PKEY_ECC;
#endif
#ifndef OPENSSL_NO_GOST
case NID_id_GostR3410_2001:
return SSL_PKEY_GOST01;
case NID_id_GostR3410_2012_256:
return SSL_PKEY_GOST12_256;
case NID_id_GostR3410_2012_512:
return SSL_PKEY_GOST12_512;
#endif
}
}
1999-04-19 21:31:43 +00:00
int ssl_verify_alarm_type(long type)
{
int al;
switch (type) {
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT:
case X509_V_ERR_UNABLE_TO_GET_CRL:
case X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER:
al = SSL_AD_UNKNOWN_CA;
break;
case X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE:
case X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY:
case X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD:
case X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD:
case X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD:
case X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD:
case X509_V_ERR_CERT_NOT_YET_VALID:
case X509_V_ERR_CRL_NOT_YET_VALID:
case X509_V_ERR_CERT_UNTRUSTED:
case X509_V_ERR_CERT_REJECTED:
case X509_V_ERR_HOSTNAME_MISMATCH:
case X509_V_ERR_EMAIL_MISMATCH:
case X509_V_ERR_IP_ADDRESS_MISMATCH:
case X509_V_ERR_DANE_NO_MATCH:
case X509_V_ERR_EE_KEY_TOO_SMALL:
case X509_V_ERR_CA_KEY_TOO_SMALL:
case X509_V_ERR_CA_MD_TOO_WEAK:
al = SSL_AD_BAD_CERTIFICATE;
break;
case X509_V_ERR_CERT_SIGNATURE_FAILURE:
case X509_V_ERR_CRL_SIGNATURE_FAILURE:
al = SSL_AD_DECRYPT_ERROR;
break;
case X509_V_ERR_CERT_HAS_EXPIRED:
case X509_V_ERR_CRL_HAS_EXPIRED:
al = SSL_AD_CERTIFICATE_EXPIRED;
break;
case X509_V_ERR_CERT_REVOKED:
al = SSL_AD_CERTIFICATE_REVOKED;
break;
case X509_V_ERR_UNSPECIFIED:
case X509_V_ERR_OUT_OF_MEM:
case X509_V_ERR_INVALID_CALL:
case X509_V_ERR_STORE_LOOKUP:
al = SSL_AD_INTERNAL_ERROR;
break;
case X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT:
case X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN:
case X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY:
case X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE:
case X509_V_ERR_CERT_CHAIN_TOO_LONG:
case X509_V_ERR_PATH_LENGTH_EXCEEDED:
case X509_V_ERR_INVALID_CA:
al = SSL_AD_UNKNOWN_CA;
break;
case X509_V_ERR_APPLICATION_VERIFICATION:
al = SSL_AD_HANDSHAKE_FAILURE;
break;
case X509_V_ERR_INVALID_PURPOSE:
al = SSL_AD_UNSUPPORTED_CERTIFICATE;
break;
default:
al = SSL_AD_CERTIFICATE_UNKNOWN;
break;
}
return (al);
}
int ssl_allow_compression(SSL *s)
{
if (s->options & SSL_OP_NO_COMPRESSION)
return 0;
return ssl_security(s, SSL_SECOP_COMPRESSION, 0, 0, NULL);
}
static int version_cmp(const SSL *s, int a, int b)
{
int dtls = SSL_IS_DTLS(s);
if (a == b)
return 0;
if (!dtls)
return a < b ? -1 : 1;
return DTLS_VERSION_LT(a, b) ? -1 : 1;
}
typedef struct {
int version;
const SSL_METHOD *(*cmeth) (void);
const SSL_METHOD *(*smeth) (void);
} version_info;
#if TLS_MAX_VERSION != TLS1_3_VERSION
# error Code needs update for TLS_method() support beyond TLS1_3_VERSION.
#endif
static const version_info tls_version_table[] = {
#ifndef OPENSSL_NO_TLS1_3
{TLS1_3_VERSION, tlsv1_3_client_method, tlsv1_3_server_method},
#else
{TLS1_3_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_TLS1_2
{TLS1_2_VERSION, tlsv1_2_client_method, tlsv1_2_server_method},
#else
{TLS1_2_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_TLS1_1
{TLS1_1_VERSION, tlsv1_1_client_method, tlsv1_1_server_method},
#else
{TLS1_1_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_TLS1
{TLS1_VERSION, tlsv1_client_method, tlsv1_server_method},
#else
{TLS1_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_SSL3
{SSL3_VERSION, sslv3_client_method, sslv3_server_method},
#else
{SSL3_VERSION, NULL, NULL},
#endif
{0, NULL, NULL},
};
#if DTLS_MAX_VERSION != DTLS1_2_VERSION
# error Code needs update for DTLS_method() support beyond DTLS1_2_VERSION.
#endif
static const version_info dtls_version_table[] = {
#ifndef OPENSSL_NO_DTLS1_2
{DTLS1_2_VERSION, dtlsv1_2_client_method, dtlsv1_2_server_method},
#else
{DTLS1_2_VERSION, NULL, NULL},
#endif
#ifndef OPENSSL_NO_DTLS1
{DTLS1_VERSION, dtlsv1_client_method, dtlsv1_server_method},
{DTLS1_BAD_VER, dtls_bad_ver_client_method, NULL},
#else
{DTLS1_VERSION, NULL, NULL},
{DTLS1_BAD_VER, NULL, NULL},
#endif
{0, NULL, NULL},
};
/*
* ssl_method_error - Check whether an SSL_METHOD is enabled.
*
* @s: The SSL handle for the candidate method
* @method: the intended method.
*
* Returns 0 on success, or an SSL error reason on failure.
*/
static int ssl_method_error(const SSL *s, const SSL_METHOD *method)
{
int version = method->version;
if ((s->min_proto_version != 0 &&
version_cmp(s, version, s->min_proto_version) < 0) ||
ssl_security(s, SSL_SECOP_VERSION, 0, version, NULL) == 0)
return SSL_R_VERSION_TOO_LOW;
if (s->max_proto_version != 0 &&
version_cmp(s, version, s->max_proto_version) > 0)
return SSL_R_VERSION_TOO_HIGH;
if ((s->options & method->mask) != 0)
return SSL_R_UNSUPPORTED_PROTOCOL;
if ((method->flags & SSL_METHOD_NO_SUITEB) != 0 && tls1_suiteb(s))
return SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE;
return 0;
}
/*
* ssl_version_supported - Check that the specified `version` is supported by
* `SSL *` instance
*
* @s: The SSL handle for the candidate method
* @version: Protocol version to test against
*
* Returns 1 when supported, otherwise 0
*/
int ssl_version_supported(const SSL *s, int version)
{
const version_info *vent;
const version_info *table;
switch (s->method->version) {
default:
/* Version should match method version for non-ANY method */
return version_cmp(s, version, s->version) == 0;
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
for (vent = table;
vent->version != 0 && version_cmp(s, version, vent->version) <= 0;
++vent) {
if (vent->cmeth != NULL &&
version_cmp(s, version, vent->version) == 0 &&
ssl_method_error(s, vent->cmeth()) == 0) {
return 1;
}
}
return 0;
}
/*
* ssl_check_version_downgrade - In response to RFC7507 SCSV version
* fallback indication from a client check whether we're using the highest
* supported protocol version.
*
* @s server SSL handle.
*
* Returns 1 when using the highest enabled version, 0 otherwise.
*/
int ssl_check_version_downgrade(SSL *s)
{
const version_info *vent;
const version_info *table;
/*
* Check that the current protocol is the highest enabled version
* (according to s->ctx->method, as version negotiation may have changed
* s->method).
*/
if (s->version == s->ctx->method->version)
return 1;
/*
* Apparently we're using a version-flexible SSL_METHOD (not at its
* highest protocol version).
*/
if (s->ctx->method->version == TLS_method()->version)
table = tls_version_table;
else if (s->ctx->method->version == DTLS_method()->version)
table = dtls_version_table;
else {
/* Unexpected state; fail closed. */
return 0;
}
for (vent = table; vent->version != 0; ++vent) {
if (vent->smeth != NULL && ssl_method_error(s, vent->smeth()) == 0)
return s->version == vent->version;
}
return 0;
}
/*
* ssl_set_version_bound - set an upper or lower bound on the supported (D)TLS
* protocols, provided the initial (D)TLS method is version-flexible. This
* function sanity-checks the proposed value and makes sure the method is
* version-flexible, then sets the limit if all is well.
*
* @method_version: The version of the current SSL_METHOD.
* @version: the intended limit.
* @bound: pointer to limit to be updated.
*
* Returns 1 on success, 0 on failure.
*/
int ssl_set_version_bound(int method_version, int version, int *bound)
{
if (version == 0) {
*bound = version;
return 1;
}
/*-
* Restrict TLS methods to TLS protocol versions.
* Restrict DTLS methods to DTLS protocol versions.
* Note, DTLS version numbers are decreasing, use comparison macros.
*
* Note that for both lower-bounds we use explicit versions, not
* (D)TLS_MIN_VERSION. This is because we don't want to break user
* configurations. If the MIN (supported) version ever rises, the user's
* "floor" remains valid even if no longer available. We don't expect the
* MAX ceiling to ever get lower, so making that variable makes sense.
*/
switch (method_version) {
default:
/*
* XXX For fixed version methods, should we always fail and not set any
* bounds, always succeed and not set any bounds, or set the bounds and
* arrange to fail later if they are not met? At present fixed-version
* methods are not subject to controls that disable individual protocol
* versions.
*/
return 0;
case TLS_ANY_VERSION:
if (version < SSL3_VERSION || version > TLS_MAX_VERSION)
return 0;
break;
case DTLS_ANY_VERSION:
if (DTLS_VERSION_GT(version, DTLS_MAX_VERSION) ||
DTLS_VERSION_LT(version, DTLS1_BAD_VER))
return 0;
break;
}
*bound = version;
return 1;
}
/*
* ssl_choose_server_version - Choose server (D)TLS version. Called when the
* client HELLO is received to select the final server protocol version and
* the version specific method.
*
* @s: server SSL handle.
*
* Returns 0 on success or an SSL error reason number on failure.
*/
int ssl_choose_server_version(SSL *s, CLIENTHELLO_MSG *hello)
{
/*-
* With version-flexible methods we have an initial state with:
*
* s->method->version == (D)TLS_ANY_VERSION,
* s->version == (D)TLS_MAX_VERSION.
*
* So we detect version-flexible methods via the method version, not the
* handle version.
*/
int server_version = s->method->version;
int client_version = hello->legacy_version;
const version_info *vent;
const version_info *table;
int disabled = 0;
RAW_EXTENSION *suppversions;
s->client_version = client_version;
switch (server_version) {
default:
if (!SSL_IS_TLS13(s)) {
if (version_cmp(s, client_version, s->version) < 0)
return SSL_R_WRONG_SSL_VERSION;
/*
* If this SSL handle is not from a version flexible method we don't
* (and never did) check min/max FIPS or Suite B constraints. Hope
* that's OK. It is up to the caller to not choose fixed protocol
* versions they don't want. If not, then easy to fix, just return
* ssl_method_error(s, s->method)
*/
return 0;
}
/*
* Fall through if we are TLSv1.3 already (this means we must be after
* a HelloRetryRequest
*/
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
suppversions = &hello->pre_proc_exts[TLSEXT_IDX_supported_versions];
if (suppversions->present && !SSL_IS_DTLS(s)) {
unsigned int candidate_vers = 0;
unsigned int best_vers = 0;
const SSL_METHOD *best_method = NULL;
PACKET versionslist;
suppversions->parsed = 1;
if (!PACKET_as_length_prefixed_1(&suppversions->data, &versionslist)) {
/* Trailing or invalid data? */
return SSL_R_LENGTH_MISMATCH;
}
while (PACKET_get_net_2(&versionslist, &candidate_vers)) {
/* TODO(TLS1.3): Remove this before release */
if (candidate_vers == TLS1_3_VERSION_DRAFT)
candidate_vers = TLS1_3_VERSION;
/*
* TODO(TLS1.3): There is some discussion on the TLS list about
* wheter to ignore versions <TLS1.2 in supported_versions. At the
* moment we honour them if present. To be reviewed later
*/
if (version_cmp(s, candidate_vers, best_vers) <= 0)
continue;
for (vent = table;
vent->version != 0 && vent->version != (int)candidate_vers;
++vent)
continue;
if (vent->version != 0 && vent->smeth != NULL) {
const SSL_METHOD *method;
method = vent->smeth();
if (ssl_method_error(s, method) == 0) {
best_vers = candidate_vers;
best_method = method;
}
}
}
if (PACKET_remaining(&versionslist) != 0) {
/* Trailing data? */
return SSL_R_LENGTH_MISMATCH;
}
if (best_vers > 0) {
if (SSL_IS_TLS13(s)) {
/*
* We get here if this is after a HelloRetryRequest. In this
* case we just check that we still negotiated TLSv1.3
*/
if (best_vers != TLS1_3_VERSION)
return SSL_R_UNSUPPORTED_PROTOCOL;
return 0;
}
s->version = best_vers;
s->method = best_method;
return 0;
}
return SSL_R_UNSUPPORTED_PROTOCOL;
}
/*
* If the supported versions extension isn't present, then the highest
* version we can negotiate is TLSv1.2
*/
if (version_cmp(s, client_version, TLS1_3_VERSION) >= 0)
client_version = TLS1_2_VERSION;
/*
* No supported versions extension, so we just use the version supplied in
* the ClientHello.
*/
for (vent = table; vent->version != 0; ++vent) {
const SSL_METHOD *method;
if (vent->smeth == NULL ||
version_cmp(s, client_version, vent->version) < 0)
continue;
method = vent->smeth();
if (ssl_method_error(s, method) == 0) {
s->version = vent->version;
s->method = method;
return 0;
}
disabled = 1;
}
return disabled ? SSL_R_UNSUPPORTED_PROTOCOL : SSL_R_VERSION_TOO_LOW;
}
/*
* ssl_choose_client_version - Choose client (D)TLS version. Called when the
* server HELLO is received to select the final client protocol version and
* the version specific method.
*
* @s: client SSL handle.
* @version: The proposed version from the server's HELLO.
*
* Returns 0 on success or an SSL error reason number on failure.
*/
int ssl_choose_client_version(SSL *s, int version)
{
const version_info *vent;
const version_info *table;
/* TODO(TLS1.3): Remove this before release */
if (version == TLS1_3_VERSION_DRAFT)
version = TLS1_3_VERSION;
switch (s->method->version) {
default:
if (version != s->version)
return SSL_R_WRONG_SSL_VERSION;
/*
* If this SSL handle is not from a version flexible method we don't
* (and never did) check min/max, FIPS or Suite B constraints. Hope
* that's OK. It is up to the caller to not choose fixed protocol
* versions they don't want. If not, then easy to fix, just return
* ssl_method_error(s, s->method)
*/
return 0;
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
for (vent = table; vent->version != 0; ++vent) {
const SSL_METHOD *method;
int err;
if (version != vent->version)
continue;
if (vent->cmeth == NULL)
break;
if (s->hello_retry_request && version != TLS1_3_VERSION)
return SSL_R_WRONG_SSL_VERSION;
method = vent->cmeth();
err = ssl_method_error(s, method);
if (err != 0)
return err;
s->method = method;
s->version = version;
return 0;
}
return SSL_R_UNSUPPORTED_PROTOCOL;
}
/*
* ssl_get_client_min_max_version - get minimum and maximum client version
* @s: The SSL connection
* @min_version: The minimum supported version
* @max_version: The maximum supported version
*
* Work out what version we should be using for the initial ClientHello if the
* version is initially (D)TLS_ANY_VERSION. We apply any explicit SSL_OP_NO_xxx
* options, the MinProtocol and MaxProtocol configuration commands, any Suite B
* constraints and any floor imposed by the security level here,
* so we don't advertise the wrong protocol version to only reject the outcome later.
*
* Computing the right floor matters. If, e.g., TLS 1.0 and 1.2 are enabled,
* TLS 1.1 is disabled, but the security level, Suite-B and/or MinProtocol
* only allow TLS 1.2, we want to advertise TLS1.2, *not* TLS1.
*
* Returns 0 on success or an SSL error reason number on failure. On failure
* min_version and max_version will also be set to 0.
*/
int ssl_get_client_min_max_version(const SSL *s, int *min_version,
int *max_version)
{
int version;
int hole;
const SSL_METHOD *single = NULL;
const SSL_METHOD *method;
const version_info *table;
const version_info *vent;
switch (s->method->version) {
default:
/*
* If this SSL handle is not from a version flexible method we don't
* (and never did) check min/max FIPS or Suite B constraints. Hope
* that's OK. It is up to the caller to not choose fixed protocol
* versions they don't want. If not, then easy to fix, just return
* ssl_method_error(s, s->method)
*/
*min_version = *max_version = s->version;
return 0;
case TLS_ANY_VERSION:
table = tls_version_table;
break;
case DTLS_ANY_VERSION:
table = dtls_version_table;
break;
}
/*
* SSL_OP_NO_X disables all protocols above X *if* there are some protocols
* below X enabled. This is required in order to maintain the "version
* capability" vector contiguous. Any versions with a NULL client method
* (protocol version client is disabled at compile-time) is also a "hole".
*
* Our initial state is hole == 1, version == 0. That is, versions above
* the first version in the method table are disabled (a "hole" above
* the valid protocol entries) and we don't have a selected version yet.
*
* Whenever "hole == 1", and we hit an enabled method, its version becomes
* the selected version, and the method becomes a candidate "single"
* method. We're no longer in a hole, so "hole" becomes 0.
*
* If "hole == 0" and we hit an enabled method, then "single" is cleared,
* as we support a contiguous range of at least two methods. If we hit
* a disabled method, then hole becomes true again, but nothing else
* changes yet, because all the remaining methods may be disabled too.
* If we again hit an enabled method after the new hole, it becomes
* selected, as we start from scratch.
*/
*min_version = version = 0;
hole = 1;
for (vent = table; vent->version != 0; ++vent) {
/*
* A table entry with a NULL client method is still a hole in the
* "version capability" vector.
*/
if (vent->cmeth == NULL) {
hole = 1;
continue;
}
method = vent->cmeth();
if (ssl_method_error(s, method) != 0) {
hole = 1;
} else if (!hole) {
single = NULL;
*min_version = method->version;
} else {
version = (single = method)->version;
*min_version = version;
hole = 0;
}
}
*max_version = version;
/* Fail if everything is disabled */
if (version == 0)
return SSL_R_NO_PROTOCOLS_AVAILABLE;
return 0;
}
/*
* ssl_set_client_hello_version - Work out what version we should be using for
* the initial ClientHello.legacy_version field.
*
* @s: client SSL handle.
*
* Returns 0 on success or an SSL error reason number on failure.
*/
int ssl_set_client_hello_version(SSL *s)
{
int ver_min, ver_max, ret;
ret = ssl_get_client_min_max_version(s, &ver_min, &ver_max);
if (ret != 0)
return ret;
s->version = ver_max;
/* TLS1.3 always uses TLS1.2 in the legacy_version field */
if (!SSL_IS_DTLS(s) && ver_max > TLS1_2_VERSION)
ver_max = TLS1_2_VERSION;
s->client_version = ver_max;
return 0;
}
/*
* Checks a list of |groups| to determine if the |group_id| is in it. If it is
* and |checkallow| is 1 then additionally check if the group is allowed to be
* used. Returns 1 if the group is in the list (and allowed if |checkallow| is
* 1) or 0 otherwise.
*/
#ifndef OPENSSL_NO_EC
int check_in_list(SSL *s, unsigned int group_id, const unsigned char *groups,
size_t num_groups, int checkallow)
{
size_t i;
if (groups == NULL || num_groups == 0)
return 0;
for (i = 0; i < num_groups; i++, groups += 2) {
unsigned int share_id = (groups[0] << 8) | (groups[1]);
if (group_id == share_id
&& (!checkallow
|| tls_curve_allowed(s, groups, SSL_SECOP_CURVE_CHECK))) {
break;
}
}
/* If i == num_groups then not in the list */
return i < num_groups;
}
#endif
/* Replace ClientHello1 in the transcript hash with a synthetic message */
int create_synthetic_message_hash(SSL *s)
{
unsigned char hashval[EVP_MAX_MD_SIZE];
size_t hashlen = 0;
unsigned char msghdr[SSL3_HM_HEADER_LENGTH];
memset(msghdr, 0, sizeof(msghdr));
/* Get the hash of the initial ClientHello */
if (!ssl3_digest_cached_records(s, 0)
|| !ssl_handshake_hash(s, hashval, sizeof(hashval), &hashlen)) {
SSLerr(SSL_F_CREATE_SYNTHETIC_MESSAGE_HASH, ERR_R_INTERNAL_ERROR);
return 0;
}
/* Reinitialise the transcript hash */
if (!ssl3_init_finished_mac(s))
return 0;
/* Inject the synthetic message_hash message */
msghdr[0] = SSL3_MT_MESSAGE_HASH;
msghdr[SSL3_HM_HEADER_LENGTH - 1] = hashlen;
if (!ssl3_finish_mac(s, msghdr, SSL3_HM_HEADER_LENGTH)
|| !ssl3_finish_mac(s, hashval, hashlen)) {
SSLerr(SSL_F_CREATE_SYNTHETIC_MESSAGE_HASH, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
static int ca_dn_cmp(const X509_NAME *const *a, const X509_NAME *const *b)
{
return X509_NAME_cmp(*a, *b);
}
int parse_ca_names(SSL *s, PACKET *pkt, int *al)
{
STACK_OF(X509_NAME) *ca_sk = sk_X509_NAME_new(ca_dn_cmp);
X509_NAME *xn = NULL;
PACKET cadns;
if (ca_sk == NULL) {
SSLerr(SSL_F_PARSE_CA_NAMES, ERR_R_MALLOC_FAILURE);
goto decerr;
}
/* get the CA RDNs */
if (!PACKET_get_length_prefixed_2(pkt, &cadns)) {
*al = SSL_AD_DECODE_ERROR;
SSLerr(SSL_F_PARSE_CA_NAMES, SSL_R_LENGTH_MISMATCH);
goto decerr;
}
while (PACKET_remaining(&cadns)) {
const unsigned char *namestart, *namebytes;
unsigned int name_len;
if (!PACKET_get_net_2(&cadns, &name_len)
|| !PACKET_get_bytes(&cadns, &namebytes, name_len)) {
SSLerr(SSL_F_PARSE_CA_NAMES, SSL_R_LENGTH_MISMATCH);
goto decerr;
}
namestart = namebytes;
if ((xn = d2i_X509_NAME(NULL, &namebytes, name_len)) == NULL) {
SSLerr(SSL_F_PARSE_CA_NAMES, ERR_R_ASN1_LIB);
goto decerr;
}
if (namebytes != (namestart + name_len)) {
SSLerr(SSL_F_PARSE_CA_NAMES, SSL_R_CA_DN_LENGTH_MISMATCH);
goto decerr;
}
if (!sk_X509_NAME_push(ca_sk, xn)) {
SSLerr(SSL_F_PARSE_CA_NAMES, ERR_R_MALLOC_FAILURE);
*al = SSL_AD_INTERNAL_ERROR;
goto err;
}
xn = NULL;
}
sk_X509_NAME_pop_free(s->s3->tmp.ca_names, X509_NAME_free);
s->s3->tmp.ca_names = ca_sk;
return 1;
decerr:
*al = SSL_AD_DECODE_ERROR;
err:
sk_X509_NAME_pop_free(ca_sk, X509_NAME_free);
X509_NAME_free(xn);
return 0;
}
int construct_ca_names(SSL *s, WPACKET *pkt)
{
STACK_OF(X509_NAME) *ca_sk = SSL_get_client_CA_list(s);
/* Start sub-packet for client CA list */
if (!WPACKET_start_sub_packet_u16(pkt))
return 0;
if (ca_sk != NULL) {
int i;
for (i = 0; i < sk_X509_NAME_num(ca_sk); i++) {
unsigned char *namebytes;
X509_NAME *name = sk_X509_NAME_value(ca_sk, i);
int namelen;
if (name == NULL
|| (namelen = i2d_X509_NAME(name, NULL)) < 0
|| !WPACKET_sub_allocate_bytes_u16(pkt, namelen,
&namebytes)
|| i2d_X509_NAME(name, &namebytes) != namelen) {
return 0;
}
}
}
if (!WPACKET_close(pkt))
return 0;
return 1;
}