openssl/test/handshake_helper.c

1119 lines
37 KiB
C
Raw Normal View History

/*
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/bio.h>
#include <openssl/x509_vfy.h>
#include <openssl/ssl.h>
#include "handshake_helper.h"
#include "testutil.h"
HANDSHAKE_RESULT *HANDSHAKE_RESULT_new()
{
HANDSHAKE_RESULT *ret = OPENSSL_zalloc(sizeof(*ret));
TEST_check(ret != NULL);
return ret;
}
void HANDSHAKE_RESULT_free(HANDSHAKE_RESULT *result)
{
if (result == NULL)
return;
OPENSSL_free(result->client_npn_negotiated);
OPENSSL_free(result->server_npn_negotiated);
OPENSSL_free(result->client_alpn_negotiated);
OPENSSL_free(result->server_alpn_negotiated);
OPENSSL_free(result);
}
/*
* Since there appears to be no way to extract the sent/received alert
* from the SSL object directly, we use the info callback and stash
* the result in ex_data.
*/
typedef struct handshake_ex_data_st {
int alert_sent;
int num_fatal_alerts_sent;
int alert_received;
int session_ticket_do_not_call;
ssl_servername_t servername;
} HANDSHAKE_EX_DATA;
typedef struct ctx_data_st {
unsigned char *npn_protocols;
size_t npn_protocols_len;
unsigned char *alpn_protocols;
size_t alpn_protocols_len;
} CTX_DATA;
/* |ctx_data| itself is stack-allocated. */
static void ctx_data_free_data(CTX_DATA *ctx_data)
{
OPENSSL_free(ctx_data->npn_protocols);
ctx_data->npn_protocols = NULL;
OPENSSL_free(ctx_data->alpn_protocols);
ctx_data->alpn_protocols = NULL;
}
static int ex_data_idx;
static void info_cb(const SSL *s, int where, int ret)
{
if (where & SSL_CB_ALERT) {
HANDSHAKE_EX_DATA *ex_data =
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
if (where & SSL_CB_WRITE) {
ex_data->alert_sent = ret;
if (strcmp(SSL_alert_type_string(ret), "F") == 0
|| strcmp(SSL_alert_desc_string(ret), "CN") == 0)
ex_data->num_fatal_alerts_sent++;
} else {
ex_data->alert_received = ret;
}
}
}
/* Select the appropriate server CTX.
* Returns SSL_TLSEXT_ERR_OK if a match was found.
* If |ignore| is 1, returns SSL_TLSEXT_ERR_NOACK on mismatch.
* Otherwise, returns SSL_TLSEXT_ERR_ALERT_FATAL on mismatch.
* An empty SNI extension also returns SSL_TSLEXT_ERR_NOACK.
*/
static int select_server_ctx(SSL *s, void *arg, int ignore)
{
const char *servername = SSL_get_servername(s, TLSEXT_NAMETYPE_host_name);
HANDSHAKE_EX_DATA *ex_data =
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
if (servername == NULL) {
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
return SSL_TLSEXT_ERR_NOACK;
}
if (strcmp(servername, "server2") == 0) {
SSL_CTX *new_ctx = (SSL_CTX*)arg;
SSL_set_SSL_CTX(s, new_ctx);
/*
* Copy over all the SSL_CTX options - reasonable behavior
* allows testing of cases where the options between two
* contexts differ/conflict
*/
SSL_clear_options(s, 0xFFFFFFFFL);
SSL_set_options(s, SSL_CTX_get_options(new_ctx));
ex_data->servername = SSL_TEST_SERVERNAME_SERVER2;
return SSL_TLSEXT_ERR_OK;
} else if (strcmp(servername, "server1") == 0) {
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
return SSL_TLSEXT_ERR_OK;
} else if (ignore) {
ex_data->servername = SSL_TEST_SERVERNAME_SERVER1;
return SSL_TLSEXT_ERR_NOACK;
} else {
/* Don't set an explicit alert, to test library defaults. */
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
}
/*
* (RFC 6066):
* If the server understood the ClientHello extension but
* does not recognize the server name, the server SHOULD take one of two
* actions: either abort the handshake by sending a fatal-level
* unrecognized_name(112) alert or continue the handshake.
*
* This behaviour is up to the application to configure; we test both
* configurations to ensure the state machine propagates the result
* correctly.
*/
static int servername_ignore_cb(SSL *s, int *ad, void *arg)
{
return select_server_ctx(s, arg, 1);
}
static int servername_reject_cb(SSL *s, int *ad, void *arg)
{
return select_server_ctx(s, arg, 0);
}
static unsigned char dummy_ocsp_resp_good_val = 0xff;
static unsigned char dummy_ocsp_resp_bad_val = 0xfe;
static int server_ocsp_cb(SSL *s, void *arg)
{
unsigned char *resp;
resp = OPENSSL_malloc(1);
if (resp == NULL)
return SSL_TLSEXT_ERR_ALERT_FATAL;
/*
* For the purposes of testing we just send back a dummy OCSP response
*/
*resp = *(unsigned char *)arg;
if (!SSL_set_tlsext_status_ocsp_resp(s, resp, 1))
return SSL_TLSEXT_ERR_ALERT_FATAL;
return SSL_TLSEXT_ERR_OK;
}
static int client_ocsp_cb(SSL *s, void *arg)
{
const unsigned char *resp;
int len;
len = SSL_get_tlsext_status_ocsp_resp(s, &resp);
if (len != 1 || *resp != dummy_ocsp_resp_good_val)
return 0;
return 1;
}
static int verify_reject_cb(X509_STORE_CTX *ctx, void *arg) {
X509_STORE_CTX_set_error(ctx, X509_V_ERR_APPLICATION_VERIFICATION);
return 0;
}
static int verify_accept_cb(X509_STORE_CTX *ctx, void *arg) {
return 1;
}
static int broken_session_ticket_cb(SSL *s, unsigned char *key_name, unsigned char *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hctx, int enc)
{
return 0;
}
static int do_not_call_session_ticket_cb(SSL *s, unsigned char *key_name,
unsigned char *iv,
EVP_CIPHER_CTX *ctx,
HMAC_CTX *hctx, int enc)
{
HANDSHAKE_EX_DATA *ex_data =
(HANDSHAKE_EX_DATA*)(SSL_get_ex_data(s, ex_data_idx));
ex_data->session_ticket_do_not_call = 1;
return 0;
}
/* Parse the comma-separated list into TLS format. */
static void parse_protos(const char *protos, unsigned char **out, size_t *outlen)
{
size_t len, i, prefix;
len = strlen(protos);
/* Should never have reuse. */
TEST_check(*out == NULL);
/* Test values are small, so we omit length limit checks. */
*out = OPENSSL_malloc(len + 1);
TEST_check(*out != NULL);
*outlen = len + 1;
/*
* foo => '3', 'f', 'o', 'o'
* foo,bar => '3', 'f', 'o', 'o', '3', 'b', 'a', 'r'
*/
memcpy(*out + 1, protos, len);
prefix = 0;
i = prefix + 1;
while (i <= len) {
if ((*out)[i] == ',') {
TEST_check(i - 1 - prefix > 0);
(*out)[prefix] = i - 1 - prefix;
prefix = i;
}
i++;
}
TEST_check(len - prefix > 0);
(*out)[prefix] = len - prefix;
}
#ifndef OPENSSL_NO_NEXTPROTONEG
/*
* The client SHOULD select the first protocol advertised by the server that it
* also supports. In the event that the client doesn't support any of server's
* protocols, or the server doesn't advertise any, it SHOULD select the first
* protocol that it supports.
*/
static int client_npn_cb(SSL *s, unsigned char **out, unsigned char *outlen,
const unsigned char *in, unsigned int inlen,
void *arg)
{
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
int ret;
ret = SSL_select_next_proto(out, outlen, in, inlen,
ctx_data->npn_protocols,
ctx_data->npn_protocols_len);
/* Accept both OPENSSL_NPN_NEGOTIATED and OPENSSL_NPN_NO_OVERLAP. */
TEST_check(ret == OPENSSL_NPN_NEGOTIATED || ret == OPENSSL_NPN_NO_OVERLAP);
return SSL_TLSEXT_ERR_OK;
}
static int server_npn_cb(SSL *s, const unsigned char **data,
unsigned int *len, void *arg)
{
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
*data = ctx_data->npn_protocols;
*len = ctx_data->npn_protocols_len;
return SSL_TLSEXT_ERR_OK;
}
#endif
/*
* The server SHOULD select the most highly preferred protocol that it supports
* and that is also advertised by the client. In the event that the server
* supports no protocols that the client advertises, then the server SHALL
* respond with a fatal "no_application_protocol" alert.
*/
static int server_alpn_cb(SSL *s, const unsigned char **out,
unsigned char *outlen, const unsigned char *in,
unsigned int inlen, void *arg)
{
CTX_DATA *ctx_data = (CTX_DATA*)(arg);
int ret;
/* SSL_select_next_proto isn't const-correct... */
unsigned char *tmp_out;
/*
* The result points either to |in| or to |ctx_data->alpn_protocols|.
* The callback is allowed to point to |in| or to a long-lived buffer,
* so we can return directly without storing a copy.
*/
ret = SSL_select_next_proto(&tmp_out, outlen,
ctx_data->alpn_protocols,
ctx_data->alpn_protocols_len, in, inlen);
*out = tmp_out;
/* Unlike NPN, we don't tolerate a mismatch. */
return ret == OPENSSL_NPN_NEGOTIATED ? SSL_TLSEXT_ERR_OK
: SSL_TLSEXT_ERR_NOACK;
}
/*
* Configure callbacks and other properties that can't be set directly
* in the server/client CONF.
*/
static void configure_handshake_ctx(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
SSL_CTX *client_ctx,
const SSL_TEST_CTX *test,
const SSL_TEST_EXTRA_CONF *extra,
CTX_DATA *server_ctx_data,
CTX_DATA *server2_ctx_data,
CTX_DATA *client_ctx_data)
{
unsigned char *ticket_keys;
size_t ticket_key_len;
TEST_check(SSL_CTX_set_max_send_fragment(server_ctx,
test->max_fragment_size) == 1);
if (server2_ctx != NULL) {
TEST_check(SSL_CTX_set_max_send_fragment(server2_ctx,
test->max_fragment_size) == 1);
}
TEST_check(SSL_CTX_set_max_send_fragment(client_ctx,
test->max_fragment_size) == 1);
switch (extra->client.verify_callback) {
case SSL_TEST_VERIFY_ACCEPT_ALL:
SSL_CTX_set_cert_verify_callback(client_ctx, &verify_accept_cb,
NULL);
break;
case SSL_TEST_VERIFY_REJECT_ALL:
SSL_CTX_set_cert_verify_callback(client_ctx, &verify_reject_cb,
NULL);
break;
case SSL_TEST_VERIFY_NONE:
break;
}
/* link the two contexts for SNI purposes */
switch (extra->server.servername_callback) {
case SSL_TEST_SERVERNAME_IGNORE_MISMATCH:
SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_ignore_cb);
SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
break;
case SSL_TEST_SERVERNAME_REJECT_MISMATCH:
SSL_CTX_set_tlsext_servername_callback(server_ctx, servername_reject_cb);
SSL_CTX_set_tlsext_servername_arg(server_ctx, server2_ctx);
break;
case SSL_TEST_SERVERNAME_CB_NONE:
break;
}
if (extra->server.cert_status != SSL_TEST_CERT_STATUS_NONE) {
SSL_CTX_set_tlsext_status_type(client_ctx, TLSEXT_STATUSTYPE_ocsp);
SSL_CTX_set_tlsext_status_cb(client_ctx, client_ocsp_cb);
SSL_CTX_set_tlsext_status_arg(client_ctx, NULL);
SSL_CTX_set_tlsext_status_cb(server_ctx, server_ocsp_cb);
SSL_CTX_set_tlsext_status_arg(server_ctx,
((extra->server.cert_status == SSL_TEST_CERT_STATUS_GOOD_RESPONSE)
? &dummy_ocsp_resp_good_val : &dummy_ocsp_resp_bad_val));
}
/*
* The initial_ctx/session_ctx always handles the encrypt/decrypt of the
* session ticket. This ticket_key callback is assigned to the second
* session (assigned via SNI), and should never be invoked
*/
if (server2_ctx != NULL)
SSL_CTX_set_tlsext_ticket_key_cb(server2_ctx,
do_not_call_session_ticket_cb);
if (extra->server.broken_session_ticket) {
SSL_CTX_set_tlsext_ticket_key_cb(server_ctx, broken_session_ticket_cb);
}
#ifndef OPENSSL_NO_NEXTPROTONEG
if (extra->server.npn_protocols != NULL) {
parse_protos(extra->server.npn_protocols,
&server_ctx_data->npn_protocols,
&server_ctx_data->npn_protocols_len);
SSL_CTX_set_npn_advertised_cb(server_ctx, server_npn_cb,
server_ctx_data);
}
if (extra->server2.npn_protocols != NULL) {
parse_protos(extra->server2.npn_protocols,
&server2_ctx_data->npn_protocols,
&server2_ctx_data->npn_protocols_len);
TEST_check(server2_ctx != NULL);
SSL_CTX_set_npn_advertised_cb(server2_ctx, server_npn_cb,
server2_ctx_data);
}
if (extra->client.npn_protocols != NULL) {
parse_protos(extra->client.npn_protocols,
&client_ctx_data->npn_protocols,
&client_ctx_data->npn_protocols_len);
SSL_CTX_set_next_proto_select_cb(client_ctx, client_npn_cb,
client_ctx_data);
}
#endif
if (extra->server.alpn_protocols != NULL) {
parse_protos(extra->server.alpn_protocols,
&server_ctx_data->alpn_protocols,
&server_ctx_data->alpn_protocols_len);
SSL_CTX_set_alpn_select_cb(server_ctx, server_alpn_cb, server_ctx_data);
}
if (extra->server2.alpn_protocols != NULL) {
TEST_check(server2_ctx != NULL);
parse_protos(extra->server2.alpn_protocols,
&server2_ctx_data->alpn_protocols,
&server2_ctx_data->alpn_protocols_len);
SSL_CTX_set_alpn_select_cb(server2_ctx, server_alpn_cb, server2_ctx_data);
}
if (extra->client.alpn_protocols != NULL) {
unsigned char *alpn_protos = NULL;
size_t alpn_protos_len;
parse_protos(extra->client.alpn_protocols,
&alpn_protos, &alpn_protos_len);
/* Reversed return value convention... */
TEST_check(SSL_CTX_set_alpn_protos(client_ctx, alpn_protos,
alpn_protos_len) == 0);
OPENSSL_free(alpn_protos);
}
/*
* Use fixed session ticket keys so that we can decrypt a ticket created with
* one CTX in another CTX. Don't address server2 for the moment.
*/
ticket_key_len = SSL_CTX_set_tlsext_ticket_keys(server_ctx, NULL, 0);
ticket_keys = OPENSSL_zalloc(ticket_key_len);
TEST_check(ticket_keys != NULL);
TEST_check(SSL_CTX_set_tlsext_ticket_keys(server_ctx, ticket_keys,
ticket_key_len) == 1);
OPENSSL_free(ticket_keys);
/* The default log list includes EC keys, so CT can't work without EC. */
#if !defined(OPENSSL_NO_CT) && !defined(OPENSSL_NO_EC)
TEST_check(SSL_CTX_set_default_ctlog_list_file(client_ctx));
switch (extra->client.ct_validation) {
case SSL_TEST_CT_VALIDATION_PERMISSIVE:
TEST_check(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_PERMISSIVE));
break;
case SSL_TEST_CT_VALIDATION_STRICT:
TEST_check(SSL_CTX_enable_ct(client_ctx, SSL_CT_VALIDATION_STRICT));
break;
case SSL_TEST_CT_VALIDATION_NONE:
break;
}
#endif
}
/* Configure per-SSL callbacks and other properties. */
static void configure_handshake_ssl(SSL *server, SSL *client,
const SSL_TEST_EXTRA_CONF *extra)
{
if (extra->client.servername != SSL_TEST_SERVERNAME_NONE)
SSL_set_tlsext_host_name(client,
ssl_servername_name(extra->client.servername));
}
/* The status for each connection phase. */
typedef enum {
PEER_SUCCESS,
PEER_RETRY,
PEER_ERROR
} peer_status_t;
/* An SSL object and associated read-write buffers. */
typedef struct peer_st {
SSL *ssl;
/* Buffer lengths are int to match the SSL read/write API. */
unsigned char *write_buf;
int write_buf_len;
unsigned char *read_buf;
int read_buf_len;
int bytes_to_write;
int bytes_to_read;
peer_status_t status;
} PEER;
static void create_peer(PEER *peer, SSL_CTX *ctx)
{
static const int peer_buffer_size = 64 * 1024;
peer->ssl = SSL_new(ctx);
TEST_check(peer->ssl != NULL);
peer->write_buf = OPENSSL_zalloc(peer_buffer_size);
TEST_check(peer->write_buf != NULL);
peer->read_buf = OPENSSL_zalloc(peer_buffer_size);
TEST_check(peer->read_buf != NULL);
peer->write_buf_len = peer->read_buf_len = peer_buffer_size;
}
static void peer_free_data(PEER *peer)
{
SSL_free(peer->ssl);
OPENSSL_free(peer->write_buf);
OPENSSL_free(peer->read_buf);
}
/*
* Note that we could do the handshake transparently under an SSL_write,
* but separating the steps is more helpful for debugging test failures.
*/
static void do_handshake_step(PEER *peer)
{
int ret;
TEST_check(peer->status == PEER_RETRY);
ret = SSL_do_handshake(peer->ssl);
if (ret == 1) {
peer->status = PEER_SUCCESS;
} else if (ret == 0) {
peer->status = PEER_ERROR;
} else {
int error = SSL_get_error(peer->ssl, ret);
/* Memory bios should never block with SSL_ERROR_WANT_WRITE. */
if (error != SSL_ERROR_WANT_READ)
peer->status = PEER_ERROR;
}
}
/*-
* Send/receive some application data. The read-write sequence is
* Peer A: (R) W - first read will yield no data
* Peer B: R W
* ...
* Peer A: R W
* Peer B: R W
* Peer A: R
*/
static void do_app_data_step(PEER *peer)
{
int ret = 1, write_bytes;
TEST_check(peer->status == PEER_RETRY);
/* We read everything available... */
while (ret > 0 && peer->bytes_to_read) {
ret = SSL_read(peer->ssl, peer->read_buf, peer->read_buf_len);
if (ret > 0) {
TEST_check(ret <= peer->bytes_to_read);
peer->bytes_to_read -= ret;
} else if (ret == 0) {
peer->status = PEER_ERROR;
return;
} else {
int error = SSL_get_error(peer->ssl, ret);
if (error != SSL_ERROR_WANT_READ) {
peer->status = PEER_ERROR;
return;
} /* Else continue with write. */
}
}
/* ... but we only write one write-buffer-full of data. */
write_bytes = peer->bytes_to_write < peer->write_buf_len ? peer->bytes_to_write :
peer->write_buf_len;
if (write_bytes) {
ret = SSL_write(peer->ssl, peer->write_buf, write_bytes);
if (ret > 0) {
/* SSL_write will only succeed with a complete write. */
TEST_check(ret == write_bytes);
peer->bytes_to_write -= ret;
} else {
/*
* We should perhaps check for SSL_ERROR_WANT_READ/WRITE here
* but this doesn't yet occur with current app data sizes.
*/
peer->status = PEER_ERROR;
return;
}
}
/*
* We could simply finish when there was nothing to read, and we have
* nothing left to write. But keeping track of the expected number of bytes
* to read gives us somewhat better guarantees that all data sent is in fact
* received.
*/
if (!peer->bytes_to_write && !peer->bytes_to_read) {
peer->status = PEER_SUCCESS;
}
}
static void do_reneg_setup_step(const SSL_TEST_CTX *test_ctx, PEER *peer)
{
int ret;
char buf;
TEST_check(peer->status == PEER_RETRY);
TEST_check(test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
|| test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT);
/* Check if we are the peer that is going to initiate */
if ((test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
&& SSL_is_server(peer->ssl))
|| (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT
&& !SSL_is_server(peer->ssl))) {
/*
* If we already asked for a renegotiation then fall through to the
* SSL_read() below.
*/
if (!SSL_renegotiate_pending(peer->ssl)) {
/*
* If we are the client we will always attempt to resume the
* session. The server may or may not resume dependant on the
* setting of SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
*/
if (SSL_is_server(peer->ssl))
ret = SSL_renegotiate(peer->ssl);
else
ret = SSL_renegotiate_abbreviated(peer->ssl);
if (!ret) {
peer->status = PEER_ERROR;
return;
}
do_handshake_step(peer);
/*
* If status is PEER_RETRY it means we're waiting on the peer to
* continue the handshake. As far as setting up the renegotiation is
* concerned that is a success. The next step will continue the
* handshake to its conclusion.
*
* If status is PEER_SUCCESS then we are the server and we have
* successfully sent the HelloRequest. We need to continue to wait
* until the handshake arrives from the client.
*/
if (peer->status == PEER_RETRY)
peer->status = PEER_SUCCESS;
else if (peer->status == PEER_SUCCESS)
peer->status = PEER_RETRY;
return;
}
}
/*
* The SSL object is still expecting app data, even though it's going to
* get a handshake message. We try to read, and it should fail - after which
* we should be in a handshake
*/
ret = SSL_read(peer->ssl, &buf, sizeof(buf));
if (ret >= 0) {
/*
* We're not actually expecting data - we're expecting a reneg to
* start
*/
peer->status = PEER_ERROR;
return;
} else {
int error = SSL_get_error(peer->ssl, ret);
if (error != SSL_ERROR_WANT_READ) {
peer->status = PEER_ERROR;
return;
}
/* If we're no in init yet then we're not done with setup yet */
if (!SSL_in_init(peer->ssl))
return;
}
peer->status = PEER_SUCCESS;
}
/*
* RFC 5246 says:
*
* Note that as of TLS 1.1,
* failure to properly close a connection no longer requires that a
* session not be resumed. This is a change from TLS 1.0 to conform
* with widespread implementation practice.
*
* However,
* (a) OpenSSL requires that a connection be shutdown for all protocol versions.
* (b) We test lower versions, too.
* So we just implement shutdown. We do a full bidirectional shutdown so that we
* can compare sent and received close_notify alerts and get some test coverage
* for SSL_shutdown as a bonus.
*/
static void do_shutdown_step(PEER *peer)
{
int ret;
TEST_check(peer->status == PEER_RETRY);
ret = SSL_shutdown(peer->ssl);
if (ret == 1) {
peer->status = PEER_SUCCESS;
} else if (ret < 0) { /* On 0, we retry. */
int error = SSL_get_error(peer->ssl, ret);
/* Memory bios should never block with SSL_ERROR_WANT_WRITE. */
if (error != SSL_ERROR_WANT_READ)
peer->status = PEER_ERROR;
}
}
typedef enum {
HANDSHAKE,
RENEG_APPLICATION_DATA,
RENEG_SETUP,
RENEG_HANDSHAKE,
APPLICATION_DATA,
SHUTDOWN,
CONNECTION_DONE
} connect_phase_t;
static connect_phase_t next_phase(const SSL_TEST_CTX *test_ctx,
connect_phase_t phase)
{
switch (phase) {
case HANDSHAKE:
if (test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_SERVER
|| test_ctx->handshake_mode == SSL_TEST_HANDSHAKE_RENEG_CLIENT)
return RENEG_APPLICATION_DATA;
return APPLICATION_DATA;
case RENEG_APPLICATION_DATA:
return RENEG_SETUP;
case RENEG_SETUP:
return RENEG_HANDSHAKE;
case RENEG_HANDSHAKE:
return APPLICATION_DATA;
case APPLICATION_DATA:
return SHUTDOWN;
case SHUTDOWN:
return CONNECTION_DONE;
case CONNECTION_DONE:
TEST_check(0);
break;
}
return -1;
}
static void do_connect_step(const SSL_TEST_CTX *test_ctx, PEER *peer,
connect_phase_t phase)
{
switch (phase) {
case HANDSHAKE:
do_handshake_step(peer);
break;
case RENEG_APPLICATION_DATA:
do_app_data_step(peer);
break;
case RENEG_SETUP:
do_reneg_setup_step(test_ctx, peer);
break;
case RENEG_HANDSHAKE:
do_handshake_step(peer);
break;
case APPLICATION_DATA:
do_app_data_step(peer);
break;
case SHUTDOWN:
do_shutdown_step(peer);
break;
case CONNECTION_DONE:
TEST_check(0);
break;
}
}
typedef enum {
/* Both parties succeeded. */
HANDSHAKE_SUCCESS,
/* Client errored. */
CLIENT_ERROR,
/* Server errored. */
SERVER_ERROR,
/* Peers are in inconsistent state. */
INTERNAL_ERROR,
/* One or both peers not done. */
HANDSHAKE_RETRY
} handshake_status_t;
/*
* Determine the handshake outcome.
* last_status: the status of the peer to have acted last.
* previous_status: the status of the peer that didn't act last.
* client_spoke_last: 1 if the client went last.
*/
static handshake_status_t handshake_status(peer_status_t last_status,
peer_status_t previous_status,
int client_spoke_last)
{
switch (last_status) {
case PEER_SUCCESS:
switch (previous_status) {
case PEER_SUCCESS:
/* Both succeeded. */
return HANDSHAKE_SUCCESS;
case PEER_RETRY:
/* Let the first peer finish. */
return HANDSHAKE_RETRY;
case PEER_ERROR:
/*
* Second peer succeeded despite the fact that the first peer
* already errored. This shouldn't happen.
*/
return INTERNAL_ERROR;
}
case PEER_RETRY:
if (previous_status == PEER_RETRY) {
/* Neither peer is done. */
return HANDSHAKE_RETRY;
} else {
/*
* Deadlock: second peer is waiting for more input while first
* peer thinks they're done (no more input is coming).
*/
return INTERNAL_ERROR;
}
case PEER_ERROR:
switch (previous_status) {
case PEER_SUCCESS:
/*
* First peer succeeded but second peer errored.
* TODO(emilia): we should be able to continue here (with some
* application data?) to ensure the first peer receives the
* alert / close_notify.
* (No tests currently exercise this branch.)
*/
return client_spoke_last ? CLIENT_ERROR : SERVER_ERROR;
case PEER_RETRY:
/* We errored; let the peer finish. */
return HANDSHAKE_RETRY;
case PEER_ERROR:
/* Both peers errored. Return the one that errored first. */
return client_spoke_last ? SERVER_ERROR : CLIENT_ERROR;
}
}
/* Control should never reach here. */
return INTERNAL_ERROR;
}
/* Convert unsigned char buf's that shouldn't contain any NUL-bytes to char. */
static char *dup_str(const unsigned char *in, size_t len)
{
char *ret;
if (len == 0)
return NULL;
/* Assert that the string does not contain NUL-bytes. */
TEST_check(OPENSSL_strnlen((const char*)(in), len) == len);
ret = OPENSSL_strndup((const char*)(in), len);
TEST_check(ret != NULL);
return ret;
}
static int pkey_type(EVP_PKEY *pkey)
{
int nid = EVP_PKEY_id(pkey);
#ifndef OPENSSL_NO_EC
if (nid == EVP_PKEY_EC) {
const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey);
return EC_GROUP_get_curve_name(EC_KEY_get0_group(ec));
}
#endif
return nid;
}
static int peer_pkey_type(SSL *s)
{
X509 *x = SSL_get_peer_certificate(s);
if (x != NULL) {
int nid = pkey_type(X509_get0_pubkey(x));
X509_free(x);
return nid;
}
return NID_undef;
}
/*
* Note that |extra| points to the correct client/server configuration
* within |test_ctx|. When configuring the handshake, general mode settings
* are taken from |test_ctx|, and client/server-specific settings should be
* taken from |extra|.
*
* The configuration code should never reach into |test_ctx->extra| or
* |test_ctx->resume_extra| directly.
*
* (We could refactor test mode settings into a substructure. This would result
* in cleaner argument passing but would complicate the test configuration
* parsing.)
*/
static HANDSHAKE_RESULT *do_handshake_internal(
SSL_CTX *server_ctx, SSL_CTX *server2_ctx, SSL_CTX *client_ctx,
const SSL_TEST_CTX *test_ctx, const SSL_TEST_EXTRA_CONF *extra,
SSL_SESSION *session_in, SSL_SESSION **session_out)
{
PEER server, client;
BIO *client_to_server, *server_to_client;
HANDSHAKE_EX_DATA server_ex_data, client_ex_data;
CTX_DATA client_ctx_data, server_ctx_data, server2_ctx_data;
HANDSHAKE_RESULT *ret = HANDSHAKE_RESULT_new();
int client_turn = 1, client_turn_count = 0;
connect_phase_t phase = HANDSHAKE;
handshake_status_t status = HANDSHAKE_RETRY;
const unsigned char* tick = NULL;
size_t tick_len = 0;
SSL_SESSION* sess = NULL;
const unsigned char *proto = NULL;
/* API dictates unsigned int rather than size_t. */
unsigned int proto_len = 0;
EVP_PKEY *tmp_key;
memset(&server_ctx_data, 0, sizeof(server_ctx_data));
memset(&server2_ctx_data, 0, sizeof(server2_ctx_data));
memset(&client_ctx_data, 0, sizeof(client_ctx_data));
memset(&server, 0, sizeof(server));
memset(&client, 0, sizeof(client));
configure_handshake_ctx(server_ctx, server2_ctx, client_ctx, test_ctx, extra,
&server_ctx_data, &server2_ctx_data, &client_ctx_data);
/* Setup SSL and buffers; additional configuration happens below. */
create_peer(&server, server_ctx);
create_peer(&client, client_ctx);
server.bytes_to_write = client.bytes_to_read = test_ctx->app_data_size;
client.bytes_to_write = server.bytes_to_read = test_ctx->app_data_size;
configure_handshake_ssl(server.ssl, client.ssl, extra);
if (session_in != NULL) {
/* In case we're testing resumption without tickets. */
TEST_check(SSL_CTX_add_session(server_ctx, session_in));
TEST_check(SSL_set_session(client.ssl, session_in));
}
memset(&server_ex_data, 0, sizeof(server_ex_data));
memset(&client_ex_data, 0, sizeof(client_ex_data));
ret->result = SSL_TEST_INTERNAL_ERROR;
client_to_server = BIO_new(BIO_s_mem());
server_to_client = BIO_new(BIO_s_mem());
TEST_check(client_to_server != NULL);
TEST_check(server_to_client != NULL);
/* Non-blocking bio. */
BIO_set_nbio(client_to_server, 1);
BIO_set_nbio(server_to_client, 1);
SSL_set_connect_state(client.ssl);
SSL_set_accept_state(server.ssl);
/* The bios are now owned by the SSL object. */
SSL_set_bio(client.ssl, server_to_client, client_to_server);
TEST_check(BIO_up_ref(server_to_client) > 0);
TEST_check(BIO_up_ref(client_to_server) > 0);
SSL_set_bio(server.ssl, client_to_server, server_to_client);
ex_data_idx = SSL_get_ex_new_index(0, "ex data", NULL, NULL, NULL);
TEST_check(ex_data_idx >= 0);
TEST_check(SSL_set_ex_data(server.ssl, ex_data_idx, &server_ex_data) == 1);
TEST_check(SSL_set_ex_data(client.ssl, ex_data_idx, &client_ex_data) == 1);
SSL_set_info_callback(server.ssl, &info_cb);
SSL_set_info_callback(client.ssl, &info_cb);
client.status = server.status = PEER_RETRY;
/*
* Half-duplex handshake loop.
* Client and server speak to each other synchronously in the same process.
* We use non-blocking BIOs, so whenever one peer blocks for read, it
* returns PEER_RETRY to indicate that it's the other peer's turn to write.
* The handshake succeeds once both peers have succeeded. If one peer
* errors out, we also let the other peer retry (and presumably fail).
*/
for(;;) {
if (client_turn) {
do_connect_step(test_ctx, &client, phase);
status = handshake_status(client.status, server.status,
1 /* client went last */);
} else {
do_connect_step(test_ctx, &server, phase);
status = handshake_status(server.status, client.status,
0 /* server went last */);
}
switch (status) {
case HANDSHAKE_SUCCESS:
client_turn_count = 0;
phase = next_phase(test_ctx, phase);
if (phase == CONNECTION_DONE) {
ret->result = SSL_TEST_SUCCESS;
goto err;
} else {
client.status = server.status = PEER_RETRY;
/*
* For now, client starts each phase. Since each phase is
* started separately, we can later control this more
* precisely, for example, to test client-initiated and
* server-initiated shutdown.
*/
client_turn = 1;
break;
}
case CLIENT_ERROR:
ret->result = SSL_TEST_CLIENT_FAIL;
goto err;
case SERVER_ERROR:
ret->result = SSL_TEST_SERVER_FAIL;
goto err;
case INTERNAL_ERROR:
ret->result = SSL_TEST_INTERNAL_ERROR;
goto err;
case HANDSHAKE_RETRY:
if (client_turn_count++ >= 2000) {
/*
* At this point, there's been so many PEER_RETRY in a row
* that it's likely both sides are stuck waiting for a read.
* It's time to give up.
*/
ret->result = SSL_TEST_INTERNAL_ERROR;
goto err;
}
/* Continue. */
client_turn ^= 1;
break;
}
}
err:
ret->server_alert_sent = server_ex_data.alert_sent;
ret->server_num_fatal_alerts_sent = server_ex_data.num_fatal_alerts_sent;
ret->server_alert_received = client_ex_data.alert_received;
ret->client_alert_sent = client_ex_data.alert_sent;
ret->client_num_fatal_alerts_sent = client_ex_data.num_fatal_alerts_sent;
ret->client_alert_received = server_ex_data.alert_received;
ret->server_protocol = SSL_version(server.ssl);
ret->client_protocol = SSL_version(client.ssl);
ret->servername = server_ex_data.servername;
if ((sess = SSL_get0_session(client.ssl)) != NULL)
SSL_SESSION_get0_ticket(sess, &tick, &tick_len);
if (tick == NULL || tick_len == 0)
ret->session_ticket = SSL_TEST_SESSION_TICKET_NO;
else
ret->session_ticket = SSL_TEST_SESSION_TICKET_YES;
ret->session_ticket_do_not_call = server_ex_data.session_ticket_do_not_call;
#ifndef OPENSSL_NO_NEXTPROTONEG
SSL_get0_next_proto_negotiated(client.ssl, &proto, &proto_len);
ret->client_npn_negotiated = dup_str(proto, proto_len);
SSL_get0_next_proto_negotiated(server.ssl, &proto, &proto_len);
ret->server_npn_negotiated = dup_str(proto, proto_len);
#endif
SSL_get0_alpn_selected(client.ssl, &proto, &proto_len);
ret->client_alpn_negotiated = dup_str(proto, proto_len);
SSL_get0_alpn_selected(server.ssl, &proto, &proto_len);
ret->server_alpn_negotiated = dup_str(proto, proto_len);
ret->client_resumed = SSL_session_reused(client.ssl);
ret->server_resumed = SSL_session_reused(server.ssl);
if (session_out != NULL)
*session_out = SSL_get1_session(client.ssl);
if (SSL_get_server_tmp_key(client.ssl, &tmp_key)) {
ret->tmp_key_type = pkey_type(tmp_key);
EVP_PKEY_free(tmp_key);
}
SSL_get_peer_signature_nid(client.ssl, &ret->server_sign_hash);
SSL_get_peer_signature_nid(server.ssl, &ret->client_sign_hash);
SSL_get_peer_signature_type_nid(client.ssl, &ret->server_sign_type);
SSL_get_peer_signature_type_nid(server.ssl, &ret->client_sign_type);
ret->server_cert_type = peer_pkey_type(client.ssl);
ret->client_cert_type = peer_pkey_type(server.ssl);
ctx_data_free_data(&server_ctx_data);
ctx_data_free_data(&server2_ctx_data);
ctx_data_free_data(&client_ctx_data);
peer_free_data(&server);
peer_free_data(&client);
return ret;
}
HANDSHAKE_RESULT *do_handshake(SSL_CTX *server_ctx, SSL_CTX *server2_ctx,
SSL_CTX *client_ctx, SSL_CTX *resume_server_ctx,
SSL_CTX *resume_client_ctx,
const SSL_TEST_CTX *test_ctx)
{
HANDSHAKE_RESULT *result;
SSL_SESSION *session = NULL;
result = do_handshake_internal(server_ctx, server2_ctx, client_ctx,
test_ctx, &test_ctx->extra,
NULL, &session);
if (test_ctx->handshake_mode != SSL_TEST_HANDSHAKE_RESUME)
goto end;
if (result->result != SSL_TEST_SUCCESS) {
result->result = SSL_TEST_FIRST_HANDSHAKE_FAILED;
goto end;
}
HANDSHAKE_RESULT_free(result);
/* We don't support SNI on second handshake yet, so server2_ctx is NULL. */
result = do_handshake_internal(resume_server_ctx, NULL, resume_client_ctx,
test_ctx, &test_ctx->resume_extra,
session, NULL);
end:
SSL_SESSION_free(session);
return result;
}