2015-01-22 03:40:55 +00:00
|
|
|
/*
|
2016-05-17 18:52:22 +00:00
|
|
|
* Copyright 2001-2016 The OpenSSL Project Authors. All Rights Reserved.
|
2001-05-16 08:44:09 +00:00
|
|
|
*
|
2016-05-17 18:52:22 +00:00
|
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
|
|
* in the file LICENSE in the source distribution or at
|
|
|
|
* https://www.openssl.org/source/license.html
|
2001-05-16 08:44:09 +00:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <openssl/e_os2.h>
|
2001-08-03 10:54:00 +00:00
|
|
|
#include <string.h>
|
2014-10-11 18:31:53 +00:00
|
|
|
#include <openssl/crypto.h>
|
2001-05-16 08:44:09 +00:00
|
|
|
|
|
|
|
#ifdef OPENSSL_SYS_VMS
|
2011-03-19 10:58:14 +00:00
|
|
|
# if __CRTL_VER >= 70000000 && \
|
|
|
|
(defined _POSIX_C_SOURCE || !defined _ANSI_C_SOURCE)
|
|
|
|
# define VMS_GMTIME_OK
|
|
|
|
# endif
|
|
|
|
# ifndef VMS_GMTIME_OK
|
|
|
|
# include <libdtdef.h>
|
|
|
|
# include <lib$routines.h>
|
|
|
|
# include <lnmdef.h>
|
|
|
|
# include <starlet.h>
|
|
|
|
# include <descrip.h>
|
|
|
|
# include <stdlib.h>
|
2015-01-22 03:40:55 +00:00
|
|
|
# endif /* ndef VMS_GMTIME_OK */
|
2016-08-03 19:33:31 +00:00
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Needed to pick up the correct definitions and declarations in some of the
|
|
|
|
* DEC C Header Files (*.H).
|
|
|
|
*/
|
|
|
|
# define __NEW_STARLET 1
|
|
|
|
|
|
|
|
# if (defined(__alpha) || defined(__ia64))
|
|
|
|
# include <iledef.h>
|
|
|
|
# else
|
|
|
|
|
|
|
|
/* VAX */
|
|
|
|
typedef struct _ile3 { /* Copied from ILEDEF.H for Alpha */
|
|
|
|
# pragma __nomember_alignment
|
|
|
|
unsigned short int ile3$w_length; /* Length of buffer in bytes */
|
|
|
|
unsigned short int ile3$w_code; /* Item code value */
|
|
|
|
void *ile3$ps_bufaddr; /* Buffer address */
|
|
|
|
unsigned short int *ile3$ps_retlen_addr; /* Address of word for returned length */
|
|
|
|
} ILE3;
|
|
|
|
# endif /* alpha || ia64 */
|
|
|
|
#endif /* OPENSSL_SYS_VMS */
|
2001-05-16 08:44:09 +00:00
|
|
|
|
|
|
|
struct tm *OPENSSL_gmtime(const time_t *timer, struct tm *result)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
struct tm *ts = NULL;
|
2001-05-16 08:44:09 +00:00
|
|
|
|
2016-03-17 16:53:11 +00:00
|
|
|
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32) && (!defined(OPENSSL_SYS_VMS) || defined(gmtime_r)) && !defined(OPENSSL_SYS_MACOSX)
|
2015-01-22 03:40:55 +00:00
|
|
|
/*
|
|
|
|
* should return &data, but doesn't on some systems, so we don't even
|
|
|
|
* look at the return value
|
|
|
|
*/
|
|
|
|
gmtime_r(timer, result);
|
|
|
|
ts = result;
|
2011-03-19 10:58:14 +00:00
|
|
|
#elif !defined(OPENSSL_SYS_VMS) || defined(VMS_GMTIME_OK)
|
2015-01-22 03:40:55 +00:00
|
|
|
ts = gmtime(timer);
|
|
|
|
if (ts == NULL)
|
|
|
|
return NULL;
|
2003-03-13 14:13:53 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
memcpy(result, ts, sizeof(struct tm));
|
|
|
|
ts = result;
|
2001-05-16 08:44:09 +00:00
|
|
|
#endif
|
2011-03-19 10:58:14 +00:00
|
|
|
#if defined( OPENSSL_SYS_VMS) && !defined( VMS_GMTIME_OK)
|
2015-01-22 03:40:55 +00:00
|
|
|
if (ts == NULL) {
|
|
|
|
static $DESCRIPTOR(tabnam, "LNM$DCL_LOGICAL");
|
|
|
|
static $DESCRIPTOR(lognam, "SYS$TIMEZONE_DIFFERENTIAL");
|
|
|
|
char logvalue[256];
|
|
|
|
unsigned int reslen = 0;
|
2016-08-03 19:33:31 +00:00
|
|
|
# if __INITIAL_POINTER_SIZE == 64
|
|
|
|
ILEB_64 itemlist[2], *pitem;
|
|
|
|
# else
|
|
|
|
ILE3 itemlist[2], *pitem;
|
|
|
|
# endif
|
2015-01-22 03:40:55 +00:00
|
|
|
int status;
|
|
|
|
time_t t;
|
|
|
|
|
2016-08-03 19:33:31 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Setup an itemlist for the call to $TRNLNM - Translate Logical Name.
|
|
|
|
*/
|
|
|
|
pitem = itemlist;
|
|
|
|
|
|
|
|
# if __INITIAL_POINTER_SIZE == 64
|
|
|
|
pitem->ileb_64$w_mbo = 1;
|
|
|
|
pitem->ileb_64$w_code = LNM$_STRING;
|
|
|
|
pitem->ileb_64$l_mbmo = -1;
|
|
|
|
pitem->ileb_64$q_length = sizeof (logvalue);
|
|
|
|
pitem->ileb_64$pq_bufaddr = logvalue;
|
|
|
|
pitem->ileb_64$pq_retlen_addr = (unsigned __int64 *) &reslen;
|
|
|
|
pitem++;
|
|
|
|
/* Last item of the item list is null terminated */
|
|
|
|
pitem->ileb_64$q_length = pitem->ileb_64$w_code = 0;
|
|
|
|
# else
|
|
|
|
pitem->ile3$w_length = sizeof (logvalue);
|
|
|
|
pitem->ile3$w_code = LNM$_STRING;
|
|
|
|
pitem->ile3$ps_bufaddr = logvalue;
|
|
|
|
pitem->ile3$ps_retlen_addr = (unsigned short int *) &reslen;
|
|
|
|
pitem++;
|
|
|
|
/* Last item of the item list is null terminated */
|
|
|
|
pitem->ile3$w_length = pitem->ile3$w_code = 0;
|
|
|
|
# endif
|
|
|
|
|
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
/* Get the value for SYS$TIMEZONE_DIFFERENTIAL */
|
|
|
|
status = sys$trnlnm(0, &tabnam, &lognam, 0, itemlist);
|
|
|
|
if (!(status & 1))
|
|
|
|
return NULL;
|
|
|
|
logvalue[reslen] = '\0';
|
|
|
|
|
|
|
|
t = *timer;
|
2004-07-19 07:50:43 +00:00
|
|
|
|
2016-08-03 19:33:31 +00:00
|
|
|
/* The following is extracted from the DEC C header time.h */
|
2015-01-22 03:40:55 +00:00
|
|
|
/*
|
|
|
|
** Beginning in OpenVMS Version 7.0 mktime, time, ctime, strftime
|
|
|
|
** have two implementations. One implementation is provided
|
|
|
|
** for compatibility and deals with time in terms of local time,
|
|
|
|
** the other __utc_* deals with time in terms of UTC.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
* We use the same conditions as in said time.h to check if we should
|
|
|
|
* assume that t contains local time (and should therefore be
|
|
|
|
* adjusted) or UTC (and should therefore be left untouched).
|
|
|
|
*/
|
|
|
|
# if __CRTL_VER < 70000000 || defined _VMS_V6_SOURCE
|
|
|
|
/* Get the numerical value of the equivalence string */
|
|
|
|
status = atoi(logvalue);
|
|
|
|
|
|
|
|
/* and use it to move time to GMT */
|
|
|
|
t -= status;
|
|
|
|
# endif
|
2001-05-16 08:44:09 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
/* then convert the result to the time structure */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Since there was no gmtime_r() to do this stuff for us, we have to
|
|
|
|
* do it the hard way.
|
|
|
|
*/
|
|
|
|
{
|
2015-01-05 11:30:03 +00:00
|
|
|
/*-
|
|
|
|
* The VMS epoch is the astronomical Smithsonian date,
|
|
|
|
if I remember correctly, which is November 17, 1858.
|
2016-02-05 20:23:54 +00:00
|
|
|
Furthermore, time is measure in tenths of microseconds
|
2015-01-05 11:30:03 +00:00
|
|
|
and stored in quadwords (64 bit integers). unix_epoch
|
|
|
|
below is January 1st 1970 expressed as a VMS time. The
|
|
|
|
following code was used to get this number:
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <lib$routines.h>
|
|
|
|
#include <starlet.h>
|
|
|
|
|
|
|
|
main()
|
|
|
|
{
|
|
|
|
unsigned long systime[2];
|
|
|
|
unsigned short epoch_values[7] =
|
|
|
|
{ 1970, 1, 1, 0, 0, 0, 0 };
|
|
|
|
|
|
|
|
lib$cvt_vectim(epoch_values, systime);
|
|
|
|
|
|
|
|
printf("%u %u", systime[0], systime[1]);
|
|
|
|
}
|
|
|
|
*/
|
2015-01-22 03:40:55 +00:00
|
|
|
unsigned long unix_epoch[2] = { 1273708544, 8164711 };
|
|
|
|
unsigned long deltatime[2];
|
|
|
|
unsigned long systime[2];
|
|
|
|
struct vms_vectime {
|
|
|
|
short year, month, day, hour, minute, second, centi_second;
|
|
|
|
} time_values;
|
|
|
|
long operation;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Turn the number of seconds since January 1st 1970 to an
|
|
|
|
* internal delta time. Note that lib$cvt_to_internal_time() will
|
|
|
|
* assume that t is signed, and will therefore break on 32-bit
|
|
|
|
* systems some time in 2038.
|
|
|
|
*/
|
|
|
|
operation = LIB$K_DELTA_SECONDS;
|
|
|
|
status = lib$cvt_to_internal_time(&operation, &t, deltatime);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Add the delta time with the Unix epoch and we have the current
|
|
|
|
* UTC time in internal format
|
|
|
|
*/
|
|
|
|
status = lib$add_times(unix_epoch, deltatime, systime);
|
|
|
|
|
|
|
|
/* Turn the internal time into a time vector */
|
|
|
|
status = sys$numtim(&time_values, systime);
|
|
|
|
|
|
|
|
/* Fill in the struct tm with the result */
|
|
|
|
result->tm_sec = time_values.second;
|
|
|
|
result->tm_min = time_values.minute;
|
|
|
|
result->tm_hour = time_values.hour;
|
|
|
|
result->tm_mday = time_values.day;
|
|
|
|
result->tm_mon = time_values.month - 1;
|
|
|
|
result->tm_year = time_values.year - 1900;
|
|
|
|
|
|
|
|
operation = LIB$K_DAY_OF_WEEK;
|
|
|
|
status = lib$cvt_from_internal_time(&operation,
|
|
|
|
&result->tm_wday, systime);
|
|
|
|
result->tm_wday %= 7;
|
|
|
|
|
|
|
|
operation = LIB$K_DAY_OF_YEAR;
|
|
|
|
status = lib$cvt_from_internal_time(&operation,
|
|
|
|
&result->tm_yday, systime);
|
|
|
|
result->tm_yday--;
|
|
|
|
|
|
|
|
result->tm_isdst = 0; /* There's no way to know... */
|
|
|
|
|
|
|
|
ts = result;
|
|
|
|
}
|
|
|
|
}
|
2001-05-16 08:44:09 +00:00
|
|
|
#endif
|
2015-01-22 03:40:55 +00:00
|
|
|
return ts;
|
|
|
|
}
|
2008-10-07 22:55:27 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
/*
|
|
|
|
* Take a tm structure and add an offset to it. This avoids any OS issues
|
2008-10-07 22:55:27 +00:00
|
|
|
* with restricted date types and overflows which cause the year 2038
|
|
|
|
* problem.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define SECS_PER_DAY (24 * 60 * 60)
|
|
|
|
|
|
|
|
static long date_to_julian(int y, int m, int d);
|
|
|
|
static void julian_to_date(long jd, int *y, int *m, int *d);
|
2012-11-21 14:13:20 +00:00
|
|
|
static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
|
2015-01-22 03:40:55 +00:00
|
|
|
long *pday, int *psec);
|
2008-10-07 22:55:27 +00:00
|
|
|
|
|
|
|
int OPENSSL_gmtime_adj(struct tm *tm, int off_day, long offset_sec)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
int time_sec, time_year, time_month, time_day;
|
|
|
|
long time_jd;
|
|
|
|
|
2016-02-05 20:23:54 +00:00
|
|
|
/* Convert time and offset into Julian day and seconds */
|
2015-01-22 03:40:55 +00:00
|
|
|
if (!julian_adj(tm, off_day, offset_sec, &time_jd, &time_sec))
|
|
|
|
return 0;
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
/* Convert Julian day back to date */
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
julian_to_date(time_jd, &time_year, &time_month, &time_day);
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
if (time_year < 1900 || time_year > 9999)
|
|
|
|
return 0;
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
/* Update tm structure */
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
tm->tm_year = time_year - 1900;
|
|
|
|
tm->tm_mon = time_month - 1;
|
|
|
|
tm->tm_mday = time_day;
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
tm->tm_hour = time_sec / 3600;
|
|
|
|
tm->tm_min = (time_sec / 60) % 60;
|
|
|
|
tm->tm_sec = time_sec % 60;
|
2010-04-15 13:25:26 +00:00
|
|
|
|
2015-01-22 03:40:55 +00:00
|
|
|
return 1;
|
2010-04-15 13:25:26 +00:00
|
|
|
|
|
|
|
}
|
|
|
|
|
2012-11-21 14:13:20 +00:00
|
|
|
int OPENSSL_gmtime_diff(int *pday, int *psec,
|
2015-01-22 03:40:55 +00:00
|
|
|
const struct tm *from, const struct tm *to)
|
|
|
|
{
|
|
|
|
int from_sec, to_sec, diff_sec;
|
|
|
|
long from_jd, to_jd, diff_day;
|
|
|
|
if (!julian_adj(from, 0, 0, &from_jd, &from_sec))
|
|
|
|
return 0;
|
|
|
|
if (!julian_adj(to, 0, 0, &to_jd, &to_sec))
|
|
|
|
return 0;
|
|
|
|
diff_day = to_jd - from_jd;
|
|
|
|
diff_sec = to_sec - from_sec;
|
|
|
|
/* Adjust differences so both positive or both negative */
|
|
|
|
if (diff_day > 0 && diff_sec < 0) {
|
|
|
|
diff_day--;
|
|
|
|
diff_sec += SECS_PER_DAY;
|
|
|
|
}
|
|
|
|
if (diff_day < 0 && diff_sec > 0) {
|
|
|
|
diff_day++;
|
|
|
|
diff_sec -= SECS_PER_DAY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (pday)
|
|
|
|
*pday = (int)diff_day;
|
|
|
|
if (psec)
|
|
|
|
*psec = diff_sec;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2010-04-15 13:25:26 +00:00
|
|
|
/* Convert tm structure and offset into julian day and seconds */
|
2012-11-21 14:13:20 +00:00
|
|
|
static int julian_adj(const struct tm *tm, int off_day, long offset_sec,
|
2015-01-22 03:40:55 +00:00
|
|
|
long *pday, int *psec)
|
|
|
|
{
|
|
|
|
int offset_hms, offset_day;
|
|
|
|
long time_jd;
|
|
|
|
int time_year, time_month, time_day;
|
|
|
|
/* split offset into days and day seconds */
|
|
|
|
offset_day = offset_sec / SECS_PER_DAY;
|
|
|
|
/* Avoid sign issues with % operator */
|
|
|
|
offset_hms = offset_sec - (offset_day * SECS_PER_DAY);
|
|
|
|
offset_day += off_day;
|
|
|
|
/* Add current time seconds to offset */
|
|
|
|
offset_hms += tm->tm_hour * 3600 + tm->tm_min * 60 + tm->tm_sec;
|
|
|
|
/* Adjust day seconds if overflow */
|
|
|
|
if (offset_hms >= SECS_PER_DAY) {
|
|
|
|
offset_day++;
|
|
|
|
offset_hms -= SECS_PER_DAY;
|
|
|
|
} else if (offset_hms < 0) {
|
|
|
|
offset_day--;
|
|
|
|
offset_hms += SECS_PER_DAY;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert date of time structure into a Julian day number.
|
|
|
|
*/
|
|
|
|
|
|
|
|
time_year = tm->tm_year + 1900;
|
|
|
|
time_month = tm->tm_mon + 1;
|
|
|
|
time_day = tm->tm_mday;
|
|
|
|
|
|
|
|
time_jd = date_to_julian(time_year, time_month, time_day);
|
|
|
|
|
|
|
|
/* Work out Julian day of new date */
|
|
|
|
time_jd += offset_day;
|
|
|
|
|
|
|
|
if (time_jd < 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
*pday = time_jd;
|
|
|
|
*psec = offset_hms;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Convert date to and from julian day Uses Fliegel & Van Flandern algorithm
|
2008-10-07 22:55:27 +00:00
|
|
|
*/
|
|
|
|
static long date_to_julian(int y, int m, int d)
|
|
|
|
{
|
2015-01-22 03:40:55 +00:00
|
|
|
return (1461 * (y + 4800 + (m - 14) / 12)) / 4 +
|
|
|
|
(367 * (m - 2 - 12 * ((m - 14) / 12))) / 12 -
|
|
|
|
(3 * ((y + 4900 + (m - 14) / 12) / 100)) / 4 + d - 32075;
|
2008-10-07 22:55:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void julian_to_date(long jd, int *y, int *m, int *d)
|
2015-01-22 03:40:55 +00:00
|
|
|
{
|
|
|
|
long L = jd + 68569;
|
|
|
|
long n = (4 * L) / 146097;
|
|
|
|
long i, j;
|
|
|
|
|
|
|
|
L = L - (146097 * n + 3) / 4;
|
|
|
|
i = (4000 * (L + 1)) / 1461001;
|
|
|
|
L = L - (1461 * i) / 4 + 31;
|
|
|
|
j = (80 * L) / 2447;
|
|
|
|
*d = L - (2447 * j) / 80;
|
|
|
|
L = j / 11;
|
|
|
|
*m = j + 2 - (12 * L);
|
|
|
|
*y = 100 * (n - 49) + i + L;
|
|
|
|
}
|