openssl/crypto/bn/asm/parisc-mont.pl

996 lines
26 KiB
Perl
Raw Normal View History

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
# On PA-7100LC this module performs ~90-50% better, less for longer
# keys, than code generated by gcc 3.2 for PA-RISC 1.1. Latter means
# that compiler utilized xmpyu instruction to perform 32x32=64-bit
# multiplication, which in turn means that "baseline" performance was
# optimal in respect to instruction set capabilities. Fair comparison
# with vendor compiler is problematic, because OpenSSL doesn't define
# BN_LLONG [presumably] for historical reasons, which drives compiler
# toward 4 times 16x16=32-bit multiplicatons [plus complementary
# shifts and additions] instead. This means that you should observe
# several times improvement over code generated by vendor compiler
# for PA-RISC 1.1, but the "baseline" is far from optimal. The actual
# improvement coefficient was never collected on PA-7100LC, or any
# other 1.1 CPU, because I don't have access to such machine with
# vendor compiler. But to give you a taste, PA-RISC 1.1 code path
# reportedly outperformed code generated by cc +DA1.1 +O3 by factor
# of ~5x on PA-8600.
#
# On PA-RISC 2.0 it has to compete with pa-risc2[W].s, which is
# reportedly ~2x faster than vendor compiler generated code [according
# to comment in pa-risc2[W].s]. Here comes a catch. Execution core of
# this implementation is actually 32-bit one, in the sense that it
# operates on 32-bit values. But pa-risc2[W].s operates on arrays of
# 64-bit BN_LONGs... How do they interoperate then? No problem. This
# module picks halves of 64-bit values in reverse order and pretends
# they were 32-bit BN_LONGs. But can 32-bit core compete with "pure"
# 64-bit code such as pa-risc2[W].s then? Well, the thing is that
# 32x32=64-bit multiplication is the best even PA-RISC 2.0 can do,
# i.e. there is no "wider" multiplication like on most other 64-bit
# platforms. This means that even being effectively 32-bit, this
# implementation performs "64-bit" computational task in same amount
# of arithmetic operations, most notably multiplications. It requires
# more memory references, most notably to tp[num], but this doesn't
# seem to exhaust memory port capacity. And indeed, dedicated PA-RISC
# 2.0 code path provides virtually same performance as pa-risc2[W].s:
# it's ~10% better for shortest key length and ~10% worse for longest
# one.
#
# In case it wasn't clear. The module has two distinct code paths:
# PA-RISC 1.1 and PA-RISC 2.0 ones. Latter features carry-free 64-bit
# additions and 64-bit integer loads, not to mention specific
# instruction scheduling. In 64-bit build naturally only 2.0 code path
# is assembled. In 32-bit application context both code paths are
# assembled, PA-RISC 2.0 CPU is detected at run-time and proper path
# is taken automatically. Also, in 32-bit build the module imposes
# couple of limitations: vector lengths has to be even and vector
# addresses has to be 64-bit aligned. Normally neither is a problem:
# most common key lengths are even and vectors are commonly malloc-ed,
# which ensures alignment.
#
# Special thanks to polarhome.com for providing HP-UX account on
# PA-RISC 1.1 machine, and to correspondent who chose to remain
# anonymous for testing the code on PA-RISC 2.0 machine.
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
$flavour = shift;
$output = shift;
open STDOUT,">$output";
if ($flavour =~ /64/) {
$LEVEL ="2.0W";
$SIZE_T =8;
$FRAME_MARKER =80;
$SAVED_RP =16;
$PUSH ="std";
$PUSHMA ="std,ma";
$POP ="ldd";
$POPMB ="ldd,mb";
$BN_SZ =$SIZE_T;
} else {
$LEVEL ="1.1"; #$LEVEL.="\n\t.ALLOW\t2.0";
$SIZE_T =4;
$FRAME_MARKER =48;
$SAVED_RP =20;
$PUSH ="stw";
$PUSHMA ="stwm";
$POP ="ldw";
$POPMB ="ldwm";
$BN_SZ =$SIZE_T;
if (open CONF,"<${dir}../../opensslconf.h") {
while(<CONF>) {
if (m/#\s*define\s+SIXTY_FOUR_BIT/) {
$BN_SZ=8;
$LEVEL="2.0";
last;
}
}
close CONF;
}
}
$FRAME=8*$SIZE_T+$FRAME_MARKER; # 8 saved regs + frame marker
# [+ argument transfer]
$LOCALS=$FRAME-$FRAME_MARKER;
$FRAME+=32; # local variables
$tp="%r31";
$ti1="%r29";
$ti0="%r28";
$rp="%r26";
$ap="%r25";
$bp="%r24";
$np="%r23";
$n0="%r22"; # passed through stack in 32-bit
$num="%r21"; # passed through stack in 32-bit
$idx="%r20";
$arrsz="%r19";
$nm1="%r7";
$nm0="%r6";
$ab1="%r5";
$ab0="%r4";
$fp="%r3";
$hi1="%r2";
$hi0="%r1";
$xfer=$n0; # accomodates [-16..15] offset in fld[dw]s
$fm0="%fr4"; $fti=$fm0;
$fbi="%fr5L";
$fn0="%fr5R";
$fai="%fr6"; $fab0="%fr7"; $fab1="%fr8";
$fni="%fr9"; $fnm0="%fr10"; $fnm1="%fr11";
$code=<<___;
.LEVEL $LEVEL
.SPACE \$TEXT\$
.SUBSPA \$CODE\$,QUAD=0,ALIGN=8,ACCESS=0x2C,CODE_ONLY
.EXPORT bn_mul_mont,ENTRY,ARGW0=GR,ARGW1=GR,ARGW2=GR,ARGW3=GR
.ALIGN 64
bn_mul_mont
.PROC
.CALLINFO FRAME=`$FRAME-8*$SIZE_T`,NO_CALLS,SAVE_RP,SAVE_SP,ENTRY_GR=6
.ENTRY
$PUSH %r2,-$SAVED_RP(%sp) ; standard prologue
$PUSHMA %r3,$FRAME(%sp)
$PUSH %r4,`-$FRAME+1*$SIZE_T`(%sp)
$PUSH %r5,`-$FRAME+2*$SIZE_T`(%sp)
$PUSH %r6,`-$FRAME+3*$SIZE_T`(%sp)
$PUSH %r7,`-$FRAME+4*$SIZE_T`(%sp)
$PUSH %r8,`-$FRAME+5*$SIZE_T`(%sp)
$PUSH %r9,`-$FRAME+6*$SIZE_T`(%sp)
$PUSH %r10,`-$FRAME+7*$SIZE_T`(%sp)
ldo -$FRAME(%sp),$fp
___
$code.=<<___ if ($SIZE_T==4);
ldw `-$FRAME_MARKER-4`($fp),$n0
ldw `-$FRAME_MARKER-8`($fp),$num
nop
nop ; alignment
___
$code.=<<___ if ($BN_SZ==4);
comiclr,<= 6,$num,%r0 ; are vectors long enough?
b L\$abort
ldi 0,%r28 ; signal "unhandled"
add,ev %r0,$num,$num ; is $num even?
b L\$abort
nop
or $ap,$np,$ti1
extru,= $ti1,31,3,%r0 ; are ap and np 64-bit aligned?
b L\$abort
nop
nop ; alignment
nop
fldws 0($n0),${fn0}
fldws,ma 4($bp),${fbi} ; bp[0]
___
$code.=<<___ if ($BN_SZ==8);
comib,> 3,$num,L\$abort ; are vectors long enough?
ldi 0,%r28 ; signal "unhandled"
addl $num,$num,$num ; I operate on 32-bit values
fldws 4($n0),${fn0} ; only low part of n0
fldws 4($bp),${fbi} ; bp[0] in flipped word order
___
$code.=<<___;
fldds 0($ap),${fai} ; ap[0,1]
fldds 0($np),${fni} ; np[0,1]
sh2addl $num,%r0,$arrsz
ldi 31,$hi0
ldo 36($arrsz),$hi1 ; space for tp[num+1]
andcm $hi1,$hi0,$hi1 ; align
addl $hi1,%sp,%sp
$PUSH $fp,-$SIZE_T(%sp)
ldo `$LOCALS+16`($fp),$xfer
ldo `$LOCALS+32+4`($fp),$tp
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[0]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[0]
xmpyu ${fn0},${fab0}R,${fm0}
addl $arrsz,$ap,$ap ; point at the end
addl $arrsz,$np,$np
subi 0,$arrsz,$idx ; j=0
ldo 8($idx),$idx ; j++++
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
fstds ${fab1},0($xfer)
fstds ${fnm1},8($xfer)
flddx $idx($ap),${fai} ; ap[2,3]
flddx $idx($np),${fni} ; np[2,3]
___
$code.=<<___ if ($BN_SZ==4);
mtctl $hi0,%cr11 ; $hi0 still holds 31
extrd,u,*= $hi0,%sar,1,$hi0 ; executes on PA-RISC 1.0
b L\$parisc11
nop
___
$code.=<<___; # PA-RISC 2.0 code-path
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldd -16($xfer),$ab0
fstds ${fab0},-16($xfer)
extrd,u $ab0,31,32,$hi0
extrd,u $ab0,63,32,$ab0
ldd -8($xfer),$nm0
fstds ${fnm0},-8($xfer)
ldo 8($idx),$idx ; j++++
addl $ab0,$nm0,$nm0 ; low part is discarded
extrd,u $nm0,31,32,$hi1
L\$1st
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,63,32,$ab1
addl $hi1,$nm1,$nm1
flddx $idx($ap),${fai} ; ap[j,j+1]
flddx $idx($np),${fni} ; np[j,j+1]
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldd -16($xfer),$ab0
fstds ${fab0},-16($xfer)
addl $hi0,$ab0,$ab0
extrd,u $ab0,31,32,$hi0
ldd -8($xfer),$nm0
fstds ${fnm0},-8($xfer)
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
stw $nm1,-4($tp) ; tp[j-1]
addl $ab0,$nm0,$nm0
stw,ma $nm0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$1st ; j++++
extrd,u $nm0,31,32,$hi1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,63,32,$ab1
addl $hi1,$nm1,$nm1
ldd -16($xfer),$ab0
addl $ab1,$nm1,$nm1
ldd -8($xfer),$nm0
extrd,u $nm1,31,32,$hi1
addl $hi0,$ab0,$ab0
extrd,u $ab0,31,32,$hi0
stw $nm1,-4($tp) ; tp[j-1]
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
ldd 0($xfer),$ab1
addl $ab0,$nm0,$nm0
ldd,mb 8($xfer),$nm1
extrd,u $nm0,31,32,$hi1
stw,ma $nm0,8($tp) ; tp[j-1]
ldo -1($num),$num ; i--
subi 0,$arrsz,$idx ; j=0
___
$code.=<<___ if ($BN_SZ==4);
fldws,ma 4($bp),${fbi} ; bp[1]
___
$code.=<<___ if ($BN_SZ==8);
fldws 0($bp),${fbi} ; bp[1] in flipped word order
___
$code.=<<___;
flddx $idx($ap),${fai} ; ap[0,1]
flddx $idx($np),${fni} ; np[0,1]
fldws 8($xfer),${fti}R ; tp[0]
addl $hi0,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
fstws,mb ${fab0}L,-8($xfer) ; save high part
stw $nm1,-4($tp) ; tp[j-1]
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
addl $hi1,$hi0,$hi0
extrd,u $hi0,31,32,$hi1
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
stw $hi0,0($tp)
stw $hi1,4($tp)
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
xmpyu ${fn0},${fab0}R,${fm0}
ldo `$LOCALS+32+4`($fp),$tp
L\$outer
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m
fstds ${fab0},-16($xfer) ; 33-bit value
fstds ${fnm0},-8($xfer)
flddx $idx($ap),${fai} ; ap[2]
flddx $idx($np),${fni} ; np[2]
ldo 8($idx),$idx ; j++++
ldd -16($xfer),$ab0 ; 33-bit value
ldd -8($xfer),$nm0
ldw 0($xfer),$hi0 ; high part
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
extrd,u $ab0,31,32,$ti0 ; carry bit
extrd,u $ab0,63,32,$ab0
fstds ${fab1},0($xfer)
addl $ti0,$hi0,$hi0 ; account carry bit
fstds ${fnm1},8($xfer)
addl $ab0,$nm0,$nm0 ; low part is discarded
ldw 0($tp),$ti1 ; tp[1]
extrd,u $nm0,31,32,$hi1
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
L\$inner
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ti1,$ti1
addl $ti1,$ab1,$ab1
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
flddx $idx($ap),${fai} ; ap[j,j+1]
flddx $idx($np),${fni} ; np[j,j+1]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
ldw 4($tp),$ti0 ; tp[j]
stw $nm1,-4($tp) ; tp[j-1]
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldd -16($xfer),$ab0
fstds ${fab0},-16($xfer)
addl $hi0,$ti0,$ti0
addl $ti0,$ab0,$ab0
ldd -8($xfer),$nm0
fstds ${fnm0},-8($xfer)
extrd,u $ab0,31,32,$hi0
extrd,u $nm1,31,32,$hi1
ldw 8($tp),$ti1 ; tp[j]
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
addl $ab0,$nm0,$nm0
stw,ma $nm0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$inner ; j++++
extrd,u $nm0,31,32,$hi1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
ldd 0($xfer),$ab1
fstds ${fab1},0($xfer)
addl $hi0,$ti1,$ti1
addl $ti1,$ab1,$ab1
ldd 8($xfer),$nm1
fstds ${fnm1},8($xfer)
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldw 4($tp),$ti0 ; tp[j]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
ldd -16($xfer),$ab0
ldd -8($xfer),$nm0
extrd,u $nm1,31,32,$hi1
addl $hi0,$ab0,$ab0
addl $ti0,$ab0,$ab0
stw $nm1,-4($tp) ; tp[j-1]
extrd,u $ab0,31,32,$hi0
ldw 8($tp),$ti1 ; tp[j]
extrd,u $ab0,63,32,$ab0
addl $hi1,$nm0,$nm0
ldd 0($xfer),$ab1
addl $ab0,$nm0,$nm0
ldd,mb 8($xfer),$nm1
extrd,u $nm0,31,32,$hi1
stw,ma $nm0,8($tp) ; tp[j-1]
addib,= -1,$num,L\$outerdone ; i--
subi 0,$arrsz,$idx ; j=0
___
$code.=<<___ if ($BN_SZ==4);
fldws,ma 4($bp),${fbi} ; bp[i]
___
$code.=<<___ if ($BN_SZ==8);
ldi 12,$ti0 ; bp[i] in flipped word order
addl,ev %r0,$num,$num
ldi -4,$ti0
addl $ti0,$bp,$bp
fldws 0($bp),${fbi}
___
$code.=<<___;
flddx $idx($ap),${fai} ; ap[0]
addl $hi0,$ab1,$ab1
flddx $idx($np),${fni} ; np[0]
fldws 8($xfer),${fti}R ; tp[0]
addl $ti1,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i]
ldw 4($tp),$ti0 ; tp[j]
addl $hi1,$nm1,$nm1
fstws,mb ${fab0}L,-8($xfer) ; save high part
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
stw $nm1,-4($tp) ; tp[j-1]
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
addl $hi1,$hi0,$hi0
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
addl $ti0,$hi0,$hi0
extrd,u $hi0,31,32,$hi1
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
stw $hi0,0($tp)
stw $hi1,4($tp)
xmpyu ${fn0},${fab0}R,${fm0}
b L\$outer
ldo `$LOCALS+32+4`($fp),$tp
L\$outerdone
addl $hi0,$ab1,$ab1
addl $ti1,$ab1,$ab1
extrd,u $ab1,31,32,$hi0
extrd,u $ab1,63,32,$ab1
ldw 4($tp),$ti0 ; tp[j]
addl $hi1,$nm1,$nm1
addl $ab1,$nm1,$nm1
extrd,u $nm1,31,32,$hi1
stw $nm1,-4($tp) ; tp[j-1]
addl $hi1,$hi0,$hi0
addl $ti0,$hi0,$hi0
extrd,u $hi0,31,32,$hi1
stw $hi0,0($tp)
stw $hi1,4($tp)
ldo `$LOCALS+32`($fp),$tp
sub %r0,%r0,%r0 ; clear borrow
___
$code.=<<___ if ($BN_SZ==4);
ldws,ma 4($tp),$ti0
extru,= $rp,31,3,%r0 ; is rp 64-bit aligned?
b L\$sub_pa11
addl $tp,$arrsz,$tp
L\$sub
ldwx $idx($np),$hi0
subb $ti0,$hi0,$hi1
ldwx $idx($tp),$ti0
addib,<> 4,$idx,L\$sub
stws,ma $hi1,4($rp)
subb $ti0,%r0,$hi1
ldo -4($tp),$tp
___
$code.=<<___ if ($BN_SZ==8);
ldd,ma 8($tp),$ti0
L\$sub
ldd $idx($np),$hi0
shrpd $ti0,$ti0,32,$ti0 ; flip word order
std $ti0,-8($tp) ; save flipped value
sub,db $ti0,$hi0,$hi1
ldd,ma 8($tp),$ti0
addib,<> 8,$idx,L\$sub
std,ma $hi1,8($rp)
extrd,u $ti0,31,32,$ti0 ; carry in flipped word order
sub,db $ti0,%r0,$hi1
ldo -8($tp),$tp
___
$code.=<<___;
and $tp,$hi1,$ap
andcm $rp,$hi1,$bp
or $ap,$bp,$np
sub $rp,$arrsz,$rp ; rewind rp
subi 0,$arrsz,$idx
ldo `$LOCALS+32`($fp),$tp
L\$copy
ldd $idx($np),$hi0
std,ma %r0,8($tp)
addib,<> 8,$idx,.-8 ; L\$copy
std,ma $hi0,8($rp)
___
if ($BN_SZ==4) { # PA-RISC 1.1 code-path
$ablo=$ab0;
$abhi=$ab1;
$nmlo0=$nm0;
$nmhi0=$nm1;
$nmlo1="%r9";
$nmhi1="%r8";
$code.=<<___;
b L\$done
nop
.ALIGN 8
L\$parisc11
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldw -12($xfer),$ablo
ldw -16($xfer),$hi0
ldw -4($xfer),$nmlo0
ldw -8($xfer),$nmhi0
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
ldo 8($idx),$idx ; j++++
add $ablo,$nmlo0,$nmlo0 ; discarded
addc %r0,$nmhi0,$hi1
ldw 4($xfer),$ablo
ldw 0($xfer),$abhi
nop
L\$1st_pa11
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[0]
flddx $idx($ap),${fai} ; ap[j,j+1]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
flddx $idx($np),${fni} ; np[j,j+1]
add $hi0,$ablo,$ablo
ldw 12($xfer),$nmlo1
addc %r0,$abhi,$hi0
ldw 8($xfer),$nmhi1
add $ablo,$nmlo1,$nmlo1
fstds ${fab1},0($xfer)
addc %r0,$nmhi1,$nmhi1
fstds ${fnm1},8($xfer)
add $hi1,$nmlo1,$nmlo1
ldw -12($xfer),$ablo
addc %r0,$nmhi1,$hi1
ldw -16($xfer),$abhi
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[0]
ldw -4($xfer),$nmlo0
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldw -8($xfer),$nmhi0
add $hi0,$ablo,$ablo
stw $nmlo1,-4($tp) ; tp[j-1]
addc %r0,$abhi,$hi0
fstds ${fab0},-16($xfer)
add $ablo,$nmlo0,$nmlo0
fstds ${fnm0},-8($xfer)
addc %r0,$nmhi0,$nmhi0
ldw 0($xfer),$abhi
add $hi1,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
stws,ma $nmlo0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$1st_pa11 ; j++++
addc %r0,$nmhi0,$hi1
ldw 8($xfer),$nmhi1
ldw 12($xfer),$nmlo1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[0]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
add $hi0,$ablo,$ablo
fstds ${fab1},0($xfer)
addc %r0,$abhi,$hi0
fstds ${fnm1},8($xfer)
add $ablo,$nmlo1,$nmlo1
ldw -16($xfer),$abhi
addc %r0,$nmhi1,$nmhi1
ldw -12($xfer),$ablo
add $hi1,$nmlo1,$nmlo1
ldw -8($xfer),$nmhi0
addc %r0,$nmhi1,$hi1
ldw -4($xfer),$nmlo0
add $hi0,$ablo,$ablo
stw $nmlo1,-4($tp) ; tp[j-1]
addc %r0,$abhi,$hi0
ldw 0($xfer),$abhi
add $ablo,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
addc %r0,$nmhi0,$nmhi0
ldws,mb 8($xfer),$nmhi1
add $hi1,$nmlo0,$nmlo0
ldw 4($xfer),$nmlo1
addc %r0,$nmhi0,$hi1
stws,ma $nmlo0,8($tp) ; tp[j-1]
ldo -1($num),$num ; i--
subi 0,$arrsz,$idx ; j=0
fldws,ma 4($bp),${fbi} ; bp[1]
flddx $idx($ap),${fai} ; ap[0,1]
flddx $idx($np),${fni} ; np[0,1]
fldws 8($xfer),${fti}R ; tp[0]
add $hi0,$ablo,$ablo
addc %r0,$abhi,$hi0
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[1]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[1]
add $hi1,$nmlo1,$nmlo1
addc %r0,$nmhi1,$nmhi1
add $ablo,$nmlo1,$nmlo1
addc %r0,$nmhi1,$hi1
fstws,mb ${fab0}L,-8($xfer) ; save high part
stw $nmlo1,-4($tp) ; tp[j-1]
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
add $hi1,$hi0,$hi0
addc %r0,%r0,$hi1
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
stw $hi0,0($tp)
stw $hi1,4($tp)
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
xmpyu ${fn0},${fab0}R,${fm0}
ldo `$LOCALS+32+4`($fp),$tp
L\$outer_pa11
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[0]*m
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[1]*m
fstds ${fab0},-16($xfer) ; 33-bit value
fstds ${fnm0},-8($xfer)
flddx $idx($ap),${fai} ; ap[2,3]
flddx $idx($np),${fni} ; np[2,3]
ldw -16($xfer),$abhi ; carry bit actually
ldo 8($idx),$idx ; j++++
ldw -12($xfer),$ablo
ldw -8($xfer),$nmhi0
ldw -4($xfer),$nmlo0
ldw 0($xfer),$hi0 ; high part
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
fstds ${fab1},0($xfer)
addl $abhi,$hi0,$hi0 ; account carry bit
fstds ${fnm1},8($xfer)
add $ablo,$nmlo0,$nmlo0 ; discarded
ldw 0($tp),$ti1 ; tp[1]
addc %r0,$nmhi0,$hi1
fstds ${fab0},-16($xfer)
fstds ${fnm0},-8($xfer)
ldw 4($xfer),$ablo
ldw 0($xfer),$abhi
L\$inner_pa11
xmpyu ${fai}R,${fbi},${fab1} ; ap[j+1]*bp[i]
flddx $idx($ap),${fai} ; ap[j,j+1]
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j+1]*m
flddx $idx($np),${fni} ; np[j,j+1]
add $hi0,$ablo,$ablo
ldw 4($tp),$ti0 ; tp[j]
addc %r0,$abhi,$abhi
ldw 12($xfer),$nmlo1
add $ti1,$ablo,$ablo
ldw 8($xfer),$nmhi1
addc %r0,$abhi,$hi0
fstds ${fab1},0($xfer)
add $ablo,$nmlo1,$nmlo1
fstds ${fnm1},8($xfer)
addc %r0,$nmhi1,$nmhi1
ldw -12($xfer),$ablo
add $hi1,$nmlo1,$nmlo1
ldw -16($xfer),$abhi
addc %r0,$nmhi1,$hi1
xmpyu ${fai}L,${fbi},${fab0} ; ap[j]*bp[i]
ldw 8($tp),$ti1 ; tp[j]
xmpyu ${fni}L,${fm0}R,${fnm0} ; np[j]*m
ldw -4($xfer),$nmlo0
add $hi0,$ablo,$ablo
ldw -8($xfer),$nmhi0
addc %r0,$abhi,$abhi
stw $nmlo1,-4($tp) ; tp[j-1]
add $ti0,$ablo,$ablo
fstds ${fab0},-16($xfer)
addc %r0,$abhi,$hi0
fstds ${fnm0},-8($xfer)
add $ablo,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
addc %r0,$nmhi0,$nmhi0
ldw 0($xfer),$abhi
add $hi1,$nmlo0,$nmlo0
stws,ma $nmlo0,8($tp) ; tp[j-1]
addib,<> 8,$idx,L\$inner_pa11 ; j++++
addc %r0,$nmhi0,$hi1
xmpyu ${fai}R,${fbi},${fab1} ; ap[j]*bp[i]
ldw 12($xfer),$nmlo1
xmpyu ${fni}R,${fm0}R,${fnm1} ; np[j]*m
ldw 8($xfer),$nmhi1
add $hi0,$ablo,$ablo
ldw 4($tp),$ti0 ; tp[j]
addc %r0,$abhi,$abhi
fstds ${fab1},0($xfer)
add $ti1,$ablo,$ablo
fstds ${fnm1},8($xfer)
addc %r0,$abhi,$hi0
ldw -16($xfer),$abhi
add $ablo,$nmlo1,$nmlo1
ldw -12($xfer),$ablo
addc %r0,$nmhi1,$nmhi1
ldw -8($xfer),$nmhi0
add $hi1,$nmlo1,$nmlo1
ldw -4($xfer),$nmlo0
addc %r0,$nmhi1,$hi1
add $hi0,$ablo,$ablo
stw $nmlo1,-4($tp) ; tp[j-1]
addc %r0,$abhi,$abhi
add $ti0,$ablo,$ablo
ldw 8($tp),$ti1 ; tp[j]
addc %r0,$abhi,$hi0
ldw 0($xfer),$abhi
add $ablo,$nmlo0,$nmlo0
ldw 4($xfer),$ablo
addc %r0,$nmhi0,$nmhi0
ldws,mb 8($xfer),$nmhi1
add $hi1,$nmlo0,$nmlo0
ldw 4($xfer),$nmlo1
addc %r0,$nmhi0,$hi1
stws,ma $nmlo0,8($tp) ; tp[j-1]
addib,= -1,$num,L\$outerdone_pa11; i--
subi 0,$arrsz,$idx ; j=0
fldws,ma 4($bp),${fbi} ; bp[i]
flddx $idx($ap),${fai} ; ap[0]
add $hi0,$ablo,$ablo
addc %r0,$abhi,$abhi
flddx $idx($np),${fni} ; np[0]
fldws 8($xfer),${fti}R ; tp[0]
add $ti1,$ablo,$ablo
addc %r0,$abhi,$hi0
ldo 8($idx),$idx ; j++++
xmpyu ${fai}L,${fbi},${fab0} ; ap[0]*bp[i]
xmpyu ${fai}R,${fbi},${fab1} ; ap[1]*bp[i]
ldw 4($tp),$ti0 ; tp[j]
add $hi1,$nmlo1,$nmlo1
addc %r0,$nmhi1,$nmhi1
fstws,mb ${fab0}L,-8($xfer) ; save high part
add $ablo,$nmlo1,$nmlo1
addc %r0,$nmhi1,$hi1
fcpy,sgl %fr0,${fti}L ; zero high part
fcpy,sgl %fr0,${fab0}L
stw $nmlo1,-4($tp) ; tp[j-1]
fcnvxf,dbl,dbl ${fti},${fti} ; 32-bit unsigned int -> double
fcnvxf,dbl,dbl ${fab0},${fab0}
add $hi1,$hi0,$hi0
addc %r0,%r0,$hi1
fadd,dbl ${fti},${fab0},${fab0} ; add tp[0]
add $ti0,$hi0,$hi0
addc %r0,$hi1,$hi1
fcnvfx,dbl,dbl ${fab0},${fab0} ; double -> 33-bit unsigned int
stw $hi0,0($tp)
stw $hi1,4($tp)
xmpyu ${fn0},${fab0}R,${fm0}
b L\$outer_pa11
ldo `$LOCALS+32+4`($fp),$tp
L\$outerdone_pa11
add $hi0,$ablo,$ablo
addc %r0,$abhi,$abhi
add $ti1,$ablo,$ablo
addc %r0,$abhi,$hi0
ldw 4($tp),$ti0 ; tp[j]
add $hi1,$nmlo1,$nmlo1
addc %r0,$nmhi1,$nmhi1
add $ablo,$nmlo1,$nmlo1
addc %r0,$nmhi1,$hi1
stw $nmlo1,-4($tp) ; tp[j-1]
add $hi1,$hi0,$hi0
addc %r0,%r0,$hi1
add $ti0,$hi0,$hi0
addc %r0,$hi1,$hi1
stw $hi0,0($tp)
stw $hi1,4($tp)
ldo `$LOCALS+32+4`($fp),$tp
sub %r0,%r0,%r0 ; clear borrow
ldw -4($tp),$ti0
addl $tp,$arrsz,$tp
L\$sub_pa11
ldwx $idx($np),$hi0
subb $ti0,$hi0,$hi1
ldwx $idx($tp),$ti0
addib,<> 4,$idx,L\$sub_pa11
stws,ma $hi1,4($rp)
subb $ti0,%r0,$hi1
ldo -4($tp),$tp
and $tp,$hi1,$ap
andcm $rp,$hi1,$bp
or $ap,$bp,$np
sub $rp,$arrsz,$rp ; rewind rp
subi 0,$arrsz,$idx
ldo `$LOCALS+32`($fp),$tp
L\$copy_pa11
ldwx $idx($np),$hi0
stws,ma %r0,4($tp)
addib,<> 4,$idx,L\$copy_pa11
stws,ma $hi0,4($rp)
nop ; alignment
L\$done
___
}
$code.=<<___;
ldi 1,%r28 ; signal "handled"
ldo $FRAME($fp),%sp ; destroy tp[num+1]
$POP `-$FRAME-$SAVED_RP`(%sp),%r2 ; standard epilogue
$POP `-$FRAME+1*$SIZE_T`(%sp),%r4
$POP `-$FRAME+2*$SIZE_T`(%sp),%r5
$POP `-$FRAME+3*$SIZE_T`(%sp),%r6
$POP `-$FRAME+4*$SIZE_T`(%sp),%r7
$POP `-$FRAME+5*$SIZE_T`(%sp),%r8
$POP `-$FRAME+6*$SIZE_T`(%sp),%r9
$POP `-$FRAME+7*$SIZE_T`(%sp),%r10
L\$abort
bv (%r2)
.EXIT
$POPMB -$FRAME(%sp),%r3
.PROCEND
.STRINGZ "Montgomery Multiplication for PA-RISC, CRYPTOGAMS by <appro\@openssl.org>"
___
# Explicitly encode PA-RISC 2.0 instructions used in this module, so
# that it can be compiled with .LEVEL 1.0. It should be noted that I
# wouldn't have to do this, if GNU assembler understood .ALLOW 2.0
# directive...
my $ldd = sub {
my ($mod,$args) = @_;
my $orig = "ldd$mod\t$args";
if ($args =~ /%r([0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 4
{ my $opcode=(0x03<<26)|($2<<21)|($1<<16)|(3<<6)|$3;
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
elsif ($args =~ /(\-?[0-9]+)\(%r([0-9]+)\),%r([0-9]+)/) # format 5
{ my $opcode=(0x03<<26)|($2<<21)|(1<<12)|(3<<6)|$3;
$opcode|=(($1&0xF)<<17)|(($1&0x10)<<12); # encode offset
$opcode|=(1<<5) if ($mod =~ /^,m/);
$opcode|=(1<<13) if ($mod =~ /^,mb/);
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $std = sub {
my ($mod,$args) = @_;
my $orig = "std$mod\t$args";
if ($args =~ /%r([0-9]+),(\-?[0-9]+)\(%r([0-9]+)\)/) # format 6
{ my $opcode=(0x03<<26)|($3<<21)|($1<<16)|(1<<12)|(0xB<<6);
$opcode|=(($2&0xF)<<1)|(($2&0x10)>>4); # encode offset
$opcode|=(1<<5) if ($mod =~ /^,m/);
$opcode|=(1<<13) if ($mod =~ /^,mb/);
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $extrd = sub {
my ($mod,$args) = @_;
my $orig = "extrd$mod\t$args";
# I only have ",u" completer, it's implicitly encoded...
if ($args =~ /%r([0-9]+),([0-9]+),([0-9]+),%r([0-9]+)/) # format 15
{ my $opcode=(0x36<<26)|($1<<21)|($4<<16);
my $len=32-$3;
$opcode |= (($2&0x20)<<6)|(($2&0x1f)<<5); # encode pos
$opcode |= (($len&0x20)<<7)|($len&0x1f); # encode len
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
elsif ($args =~ /%r([0-9]+),%sar,([0-9]+),%r([0-9]+)/) # format 12
{ my $opcode=(0x34<<26)|($1<<21)|($3<<16)|(2<<11)|(1<<9);
my $len=32-$2;
$opcode |= (($len&0x20)<<3)|($len&0x1f); # encode len
$opcode |= (1<<13) if ($mod =~ /,\**=/);
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $shrpd = sub {
my ($mod,$args) = @_;
my $orig = "shrpd$mod\t$args";
if ($args =~ /%r([0-9]+),%r([0-9]+),([0-9]+),%r([0-9]+)/) # format 14
{ my $opcode=(0x34<<26)|($2<<21)|($1<<16)|(1<<10)|$4;
my $cpos=63-$3;
$opcode |= (($cpos&0x20)<<6)|(($cpos&0x1f)<<5); # encode sa
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig;
}
else { "\t".$orig; }
};
my $sub = sub {
my ($mod,$args) = @_;
my $orig = "sub$mod\t$args";
if ($mod eq ",db" && $args =~ /%r([0-9]+),%r([0-9]+),%r([0-9]+)/) {
my $opcode=(0x02<<26)|($2<<21)|($1<<16)|$3;
$opcode|=(1<<10); # e1
$opcode|=(1<<8); # e2
$opcode|=(1<<5); # d
sprintf "\t.WORD\t0x%08x\t; %s",$opcode,$orig
}
else { "\t".$orig; }
};
sub assemble {
my ($mnemonic,$mod,$args)=@_;
my $opcode = eval("\$$mnemonic");
ref($opcode) eq 'CODE' ? &$opcode($mod,$args) : "\t$mnemonic$mod\t$args";
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
# flip word order in 64-bit mode...
s/(xmpyu\s+)($fai|$fni)([LR])/$1.$2.($3 eq "L"?"R":"L")/e if ($BN_SZ==8);
# assemble 2.0 instructions in 32-bit mode...
s/^\s+([a-z]+)([\S]*)\s+([\S]*)/&assemble($1,$2,$3)/e if ($BN_SZ==4);
s/\bbv\b/bve/gm if ($SIZE_T==8);
print $_,"\n";
}
close STDOUT;