openssl/test/bntest.c

2182 lines
56 KiB
C
Raw Normal View History

/*
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <assert.h>
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "e_os.h"
#include <internal/numbers.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "testutil.h"
#include "test_main_custom.h"
/*
* In bn_lcl.h, bn_expand() is defined as a static ossl_inline function.
* This is fine in itself, it will end up as an unused static function in
* the worst case. However, it references bn_expand2(), which is a private
* function in libcrypto and therefore unavailable on some systems. This
* may result in a linker error because of unresolved symbols.
*
* To avoid this, we define a dummy variant of bn_expand2() here, and to
* avoid possible clashes with libcrypto, we rename it first, using a macro.
*/
#define bn_expand2 dummy_bn_expand2
BIGNUM *bn_expand2(BIGNUM *b, int words);
BIGNUM *bn_expand2(BIGNUM *b, int words) { return NULL; }
#include "../crypto/bn/bn_lcl.h"
#define MAXPAIRS 20
/*
* Things in boring, not in openssl. TODO we should add them.
*/
#define HAVE_BN_PADDED 0
#define HAVE_BN_SQRT 0
typedef struct pair_st {
char *key;
char *value;
} PAIR;
typedef struct stanza_st {
int start;
int numpairs;
PAIR pairs[MAXPAIRS];
} STANZA;
typedef struct filetest_st {
const char *name;
int (*func)(STANZA *s);
} FILETEST;
typedef struct mpitest_st {
const char *base10;
const char *mpi;
size_t mpi_len;
} MPITEST;
static const int NUM0 = 100; /* number of tests */
static const int NUM1 = 50; /* additional tests for some functions */
static FILE *fp;
static BN_CTX *ctx;
/*
* Look for |key| in the stanza and return it or NULL if not found.
*/
static const char *findattr(STANZA *s, const char *key)
{
int i = s->numpairs;
PAIR *pp = s->pairs;
for ( ; --i >= 0; pp++)
if (strcasecmp(pp->key, key) == 0)
return pp->value;
return NULL;
}
/*
* Parse BIGNUM, return number of bytes parsed.
*/
static int parseBN(BIGNUM **out, const char *in)
{
*out = NULL;
return BN_hex2bn(out, in);
}
static int parsedecBN(BIGNUM **out, const char *in)
{
*out = NULL;
return BN_dec2bn(out, in);
}
static BIGNUM *getBN(STANZA *s, const char *attribute)
{
const char *hex;
BIGNUM *ret = NULL;
if ((hex = findattr(s, attribute)) == NULL) {
fprintf(stderr, "Can't find %s in test at line %d\n",
attribute, s->start);
return NULL;
}
if (parseBN(&ret, hex) != (int)strlen(hex)) {
fprintf(stderr, "Could not decode '%s'.\n", hex);
return NULL;
}
return ret;
}
static int getint(STANZA *s, int *out, const char *attribute)
{
BIGNUM *ret = getBN(s, attribute);
BN_ULONG word;
int st = 0;
if (ret == NULL)
goto err;
if ((word = BN_get_word(ret)) > INT_MAX)
goto err;
*out = (int)word;
st = 1;
err:
BN_free(ret);
return st;
}
static int equalBN(const char *op, const BIGNUM *expected, const BIGNUM *actual)
{
char *exstr = NULL;
char *actstr = NULL;
if (BN_cmp(expected, actual) == 0)
return 1;
exstr = BN_bn2hex(expected);
actstr = BN_bn2hex(actual);
if (exstr == NULL || actstr == NULL)
goto err;
fprintf(stderr, "Got %s =\n", op);
fprintf(stderr, "\t%s\n", actstr);
fprintf(stderr, "wanted:\n");
fprintf(stderr, "\t%s\n", exstr);
err:
OPENSSL_free(exstr);
OPENSSL_free(actstr);
return 0;
}
/*
* Return a "random" flag for if a BN should be negated.
*/
static int rand_neg(void)
{
static unsigned int neg = 0;
static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 };
return sign[(neg++) % 8];
}
static int test_sub()
{
BIGNUM *a, *b, *c;
int i;
a = BN_new();
b = BN_new();
c = BN_new();
for (i = 0; i < NUM0 + NUM1; i++) {
if (i < NUM1) {
BN_bntest_rand(a, 512, 0, 0);
BN_copy(b, a);
if (BN_set_bit(a, i) == 0)
return 0;
BN_add_word(b, i);
} else {
BN_bntest_rand(b, 400 + i - NUM1, 0, 0);
a->neg = rand_neg();
b->neg = rand_neg();
}
BN_sub(c, a, b);
BN_add(c, c, b);
BN_sub(c, c, a);
if (!BN_is_zero(c)) {
printf("Subtract test failed!\n");
return 0;
}
}
BN_free(a);
BN_free(b);
BN_free(c);
return 1;
}
static int test_div_recip()
{
BIGNUM *a, *b, *c, *d, *e;
BN_RECP_CTX *recp;
int i;
recp = BN_RECP_CTX_new();
a = BN_new();
b = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
for (i = 0; i < NUM0 + NUM1; i++) {
if (i < NUM1) {
BN_bntest_rand(a, 400, 0, 0);
BN_copy(b, a);
BN_lshift(a, a, i);
BN_add_word(a, i);
} else
BN_bntest_rand(b, 50 + 3 * (i - NUM1), 0, 0);
a->neg = rand_neg();
b->neg = rand_neg();
BN_RECP_CTX_set(recp, b, ctx);
BN_div_recp(d, c, a, recp, ctx);
BN_mul(e, d, b, ctx);
BN_add(d, e, c);
BN_sub(d, d, a);
if (!BN_is_zero(d)) {
printf("Reciprocal division test failed!\n");
printf("a=");
BN_print_fp(stdout, a);
printf("\nb=");
BN_print_fp(stdout, b);
printf("\n");
return 0;
}
}
BN_free(a);
BN_free(b);
BN_free(c);
BN_free(d);
BN_free(e);
BN_RECP_CTX_free(recp);
return 1;
}
static int test_mod()
{
BIGNUM *a, *b, *c, *d, *e;
int i;
a = BN_new();
b = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
BN_bntest_rand(a, 1024, 0, 0);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(b, 450 + i * 10, 0, 0);
a->neg = rand_neg();
b->neg = rand_neg();
BN_mod(c, a, b, ctx);
BN_div(d, e, a, b, ctx);
BN_sub(e, e, c);
if (!BN_is_zero(e)) {
printf("Modulo test failed!\n");
return 0;
}
}
BN_free(a);
BN_free(b);
BN_free(c);
BN_free(d);
BN_free(e);
return 1;
}
/*
* Test constant-time modular exponentiation with 1024-bit inputs, which on
* x86_64 cause a different code branch to be taken.
*/
static int test_modexp_mont5()
{
BIGNUM *a, *p, *m, *d, *e, *b, *n, *c;
BN_MONT_CTX *mont;
a = BN_new();
p = BN_new();
m = BN_new();
d = BN_new();
e = BN_new();
b = BN_new();
n = BN_new();
c = BN_new();
mont = BN_MONT_CTX_new();
BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */
/* Zero exponent */
BN_bntest_rand(a, 1024, 0, 0);
BN_zero(p);
if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL))
return 0;
if (!BN_is_one(d)) {
printf("Modular exponentiation test failed!\n");
return 0;
}
/* Regression test for carry bug in mulx4x_mont */
BN_hex2bn(&a,
"7878787878787878787878787878787878787878787878787878787878787878"
"7878787878787878787878787878787878787878787878787878787878787878"
"7878787878787878787878787878787878787878787878787878787878787878"
"7878787878787878787878787878787878787878787878787878787878787878");
BN_hex2bn(&b,
"095D72C08C097BA488C5E439C655A192EAFB6380073D8C2664668EDDB4060744"
"E16E57FB4EDB9AE10A0CEFCDC28A894F689A128379DB279D48A2E20849D68593"
"9B7803BCF46CEBF5C533FB0DD35B080593DE5472E3FE5DB951B8BFF9B4CB8F03"
"9CC638A5EE8CDD703719F8000E6A9F63BEED5F2FCD52FF293EA05A251BB4AB81");
BN_hex2bn(&n,
"D78AF684E71DB0C39CFF4E64FB9DB567132CB9C50CC98009FEB820B26F2DED9B"
"91B9B5E2B83AE0AE4EB4E0523CA726BFBE969B89FD754F674CE99118C3F2D1C5"
"D81FDC7C54E02B60262B241D53C040E99E45826ECA37A804668E690E1AFC1CA4"
"2C9A15D84D4954425F0B7642FC0BD9D7B24E2618D2DCC9B729D944BADACFDDAF");
BN_MONT_CTX_set(mont, n, ctx);
BN_mod_mul_montgomery(c, a, b, mont, ctx);
BN_mod_mul_montgomery(d, b, a, mont, ctx);
if (BN_cmp(c, d)) {
fprintf(stderr, "Montgomery multiplication test failed:"
" a*b != b*a.\n");
return 0;
}
/* Zero input */
BN_bntest_rand(p, 1024, 0, 0);
BN_zero(a);
if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL))
return 0;
if (!BN_is_zero(d)) {
fprintf(stderr, "Modular exponentiation test failed!\n");
return 0;
}
/*
* Craft an input whose Montgomery representation is 1, i.e., shorter
* than the modulus m, in order to test the const time precomputation
* scattering/gathering.
*/
BN_one(a);
BN_MONT_CTX_set(mont, m, ctx);
if (!BN_from_montgomery(e, a, mont, ctx))
return 0;
if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL))
return 0;
if (!BN_mod_exp_simple(a, e, p, m, ctx))
return 0;
if (BN_cmp(a, d) != 0) {
printf("Modular exponentiation test failed!\n");
return 0;
}
/* Finally, some regular test vectors. */
BN_bntest_rand(e, 1024, 0, 0);
if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL))
return 0;
if (!BN_mod_exp_simple(a, e, p, m, ctx))
return 0;
if (BN_cmp(a, d) != 0) {
printf("Modular exponentiation test failed!\n");
return 0;
}
BN_MONT_CTX_free(mont);
BN_free(a);
BN_free(p);
BN_free(m);
BN_free(d);
BN_free(e);
BN_free(b);
BN_free(n);
BN_free(c);
return 1;
}
#ifndef OPENSSL_NO_EC2M
static int test_gf2m_add()
{
BIGNUM *a, *b, *c;
int i, st = 0;
a = BN_new();
b = BN_new();
c = BN_new();
for (i = 0; i < NUM0; i++) {
BN_rand(a, 512, 0, 0);
BN_copy(b, BN_value_one());
a->neg = rand_neg();
b->neg = rand_neg();
BN_GF2m_add(c, a, b);
/* Test that two added values have the correct parity. */
if ((BN_is_odd(a) && BN_is_odd(c))
|| (!BN_is_odd(a) && !BN_is_odd(c))) {
printf("GF(2^m) addition test (a) failed!\n");
goto err;
}
BN_GF2m_add(c, c, c);
/* Test that c + c = 0. */
if (!BN_is_zero(c)) {
printf("GF(2^m) addition test (b) failed!\n");
goto err;
}
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(c);
return st;
}
static int test_gf2m_mod()
{
static int p0[] = { 163, 7, 6, 3, 0, -1 };
static int p1[] = { 193, 15, 0, -1 };
BIGNUM *a, *b[2], *c, *d, *e;
int i, j, st = 0;
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 1024, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod(c, a, b[j]);
BN_GF2m_add(d, a, c);
BN_GF2m_mod(e, d, b[j]);
/* Test that a + (a mod p) mod p == 0. */
if (!BN_is_zero(e)) {
printf("GF(2^m) modulo test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
BN_free(e);
return st;
}
static int test_gf2m_mul()
{
BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h;
int i, j, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
f = BN_new();
g = BN_new();
h = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 1024, 0, 0);
BN_bntest_rand(c, 1024, 0, 0);
BN_bntest_rand(d, 1024, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod_mul(e, a, c, b[j], ctx);
BN_GF2m_add(f, a, d);
BN_GF2m_mod_mul(g, f, c, b[j], ctx);
BN_GF2m_mod_mul(h, d, c, b[j], ctx);
BN_GF2m_add(f, e, g);
BN_GF2m_add(f, f, h);
/* Test that (a+d)*c = a*c + d*c. */
if (!BN_is_zero(f)) {
printf("GF(2^m) modular multiplication test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
BN_free(e);
BN_free(f);
BN_free(g);
BN_free(h);
return st;
}
static int test_gf2m_sqr()
{
BIGNUM *a, *b[2], *c, *d;
int i, j, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 1024, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod_sqr(c, a, b[j], ctx);
BN_copy(d, a);
BN_GF2m_mod_mul(d, a, d, b[j], ctx);
BN_GF2m_add(d, c, d);
/* Test that a*a = a^2. */
if (!BN_is_zero(d)) {
printf("GF(2^m) modular squaring test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
return st;
}
static int test_gf2m_modinv()
{
BIGNUM *a, *b[2], *c, *d;
int i, j, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 512, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod_inv(c, a, b[j], ctx);
BN_GF2m_mod_mul(d, a, c, b[j], ctx);
/* Test that ((1/a)*a) = 1. */
if (!BN_is_one(d)) {
printf("GF(2^m) modular inversion test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
return st;
}
static int test_gf2m_moddiv()
{
BIGNUM *a, *b[2], *c, *d, *e, *f;
int i, j, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
f = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 512, 0, 0);
BN_bntest_rand(c, 512, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod_div(d, a, c, b[j], ctx);
BN_GF2m_mod_mul(e, d, c, b[j], ctx);
BN_GF2m_mod_div(f, a, e, b[j], ctx);
/* Test that ((a/c)*c)/a = 1. */
if (!BN_is_one(f)) {
printf("GF(2^m) modular division test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
BN_free(e);
BN_free(f);
return st;
}
static int test_gf2m_modexp()
{
BIGNUM *a, *b[2], *c, *d, *e, *f;
int i, j, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
f = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 512, 0, 0);
BN_bntest_rand(c, 512, 0, 0);
BN_bntest_rand(d, 512, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod_exp(e, a, c, b[j], ctx);
BN_GF2m_mod_exp(f, a, d, b[j], ctx);
BN_GF2m_mod_mul(e, e, f, b[j], ctx);
BN_add(f, c, d);
BN_GF2m_mod_exp(f, a, f, b[j], ctx);
BN_GF2m_add(f, e, f);
/* Test that a^(c+d)=a^c*a^d. */
if (!BN_is_zero(f)) {
printf("GF(2^m) modular exponentiation test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
BN_free(e);
BN_free(f);
return st;
}
static int test_gf2m_modsqrt()
{
BIGNUM *a, *b[2], *c, *d, *e, *f;
int i, j, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
f = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 512, 0, 0);
for (j = 0; j < 2; j++) {
BN_GF2m_mod(c, a, b[j]);
BN_GF2m_mod_sqrt(d, a, b[j], ctx);
BN_GF2m_mod_sqr(e, d, b[j], ctx);
BN_GF2m_add(f, c, e);
/* Test that d^2 = a, where d = sqrt(a). */
if (!BN_is_zero(f)) {
printf("GF(2^m) modular square root test failed!\n");
goto err;
}
}
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
BN_free(e);
BN_free(f);
return st;
}
static int test_gf2m_modsolvequad()
{
BIGNUM *a, *b[2], *c, *d, *e;
int i, j, s = 0, t, st = 0;
int p0[] = { 163, 7, 6, 3, 0, -1 };
int p1[] = { 193, 15, 0, -1 };
a = BN_new();
b[0] = BN_new();
b[1] = BN_new();
c = BN_new();
d = BN_new();
e = BN_new();
BN_GF2m_arr2poly(p0, b[0]);
BN_GF2m_arr2poly(p1, b[1]);
for (i = 0; i < NUM0; i++) {
BN_bntest_rand(a, 512, 0, 0);
for (j = 0; j < 2; j++) {
t = BN_GF2m_mod_solve_quad(c, a, b[j], ctx);
if (t) {
s++;
BN_GF2m_mod_sqr(d, c, b[j], ctx);
BN_GF2m_add(d, c, d);
BN_GF2m_mod(e, a, b[j]);
BN_GF2m_add(e, e, d);
/*
* Test that solution of quadratic c satisfies c^2 + c = a.
*/
if (!BN_is_zero(e)) {
printf("GF(2^m) modular solve quadratic test failed!\n");
goto err;
}
}
}
}
if (s == 0) {
printf("All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n",
NUM0);
printf("this is very unlikely and probably indicates an error.\n");
goto err;
}
st = 1;
err:
BN_free(a);
BN_free(b[0]);
BN_free(b[1]);
BN_free(c);
BN_free(d);
BN_free(e);
return st;
}
#endif
static int test_kronecker()
{
BIGNUM *a, *b, *r, *t;
int i;
int legendre, kronecker;
int st = 0;
a = BN_new();
b = BN_new();
r = BN_new();
t = BN_new();
if (a == NULL || b == NULL || r == NULL || t == NULL)
goto err;
/*
* We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In
* this case we know that if b is prime, then BN_kronecker(a, b, ctx) is
* congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we
* generate a random prime b and compare these values for a number of
* random a's. (That is, we run the Solovay-Strassen primality test to
* confirm that b is prime, except that we don't want to test whether b
* is prime but whether BN_kronecker works.)
*/
if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, NULL))
goto err;
b->neg = rand_neg();
for (i = 0; i < NUM0; i++) {
if (!BN_bntest_rand(a, 512, 0, 0))
goto err;
a->neg = rand_neg();
/* t := (|b|-1)/2 (note that b is odd) */
if (!BN_copy(t, b))
goto err;
t->neg = 0;
if (!BN_sub_word(t, 1))
goto err;
if (!BN_rshift1(t, t))
goto err;
/* r := a^t mod b */
b->neg = 0;
if (!BN_mod_exp_recp(r, a, t, b, ctx))
goto err;
b->neg = 1;
if (BN_is_word(r, 1))
legendre = 1;
else if (BN_is_zero(r))
legendre = 0;
else {
if (!BN_add_word(r, 1))
goto err;
if (0 != BN_ucmp(r, b)) {
printf("Legendre symbol computation failed\n");
goto err;
}
legendre = -1;
}
kronecker = BN_kronecker(a, b, ctx);
if (kronecker < -1)
goto err;
/* we actually need BN_kronecker(a, |b|) */
if (a->neg && b->neg)
kronecker = -kronecker;
if (legendre != kronecker) {
printf("legendre != kronecker; a = ");
BN_print_fp(stdout, a);
printf(", b = ");
BN_print_fp(stdout, b);
printf("\n");
goto err;
}
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(r);
BN_free(t);
return st;
}
static int file_sum(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *b = getBN(s, "B");
BIGNUM *sum = getBN(s, "Sum");
BIGNUM *ret = BN_new();
BN_ULONG b_word;
int st = 0;
if (a == NULL || b == NULL || sum == NULL || ret == NULL)
goto err;
if (!BN_add(ret, a, b)
|| !equalBN("A + B", sum, ret)
|| !BN_sub(ret, sum, a)
|| !equalBN("Sum - A", b, ret)
|| !BN_sub(ret, sum, b)
|| !equalBN("Sum - B", a, ret))
goto err;
/*
* Test that the functions work when |r| and |a| point to the same BIGNUM,
* or when |r| and |b| point to the same BIGNUM.
* TODO: Test where all of |r|, |a|, and |b| point to the same BIGNUM.
*/
if (!BN_copy(ret, a)
|| !BN_add(ret, ret, b)
|| !equalBN("A + B (r is a)", sum, ret)
|| !BN_copy(ret, b)
|| !BN_add(ret, a, ret)
|| !equalBN("A + B (r is b)", sum, ret)
|| !BN_copy(ret, sum)
|| !BN_sub(ret, ret, a)
|| !equalBN("Sum - A (r is a)", b, ret)
|| !BN_copy(ret, a)
|| !BN_sub(ret, sum, ret)
|| !equalBN("Sum - A (r is b)", b, ret)
|| !BN_copy(ret, sum)
|| !BN_sub(ret, ret, b)
|| !equalBN("Sum - B (r is a)", a, ret)
|| !BN_copy(ret, b)
|| !BN_sub(ret, sum, ret)
|| !equalBN("Sum - B (r is b)", a, ret))
goto err;
/*
* Test BN_uadd() and BN_usub() with the prerequisites they are
* documented as having. Note that these functions are frequently used
* when the prerequisites don't hold. In those cases, they are supposed
* to work as if the prerequisite hold, but we don't test that yet.
* TODO: test that.
*/
if (!BN_is_negative(a) && !BN_is_negative(b) && BN_cmp(a, b) >= 0) {
if (!BN_uadd(ret, a, b)
|| !equalBN("A +u B", sum, ret)
|| !BN_usub(ret, sum, a)
|| !equalBN("Sum -u A", b, ret)
|| !BN_usub(ret, sum, b)
|| !equalBN("Sum -u B", a, ret))
goto err;
/*
* Test that the functions work when |r| and |a| point to the same
* BIGNUM, or when |r| and |b| point to the same BIGNUM.
* TODO: Test where all of |r|, |a|, and |b| point to the same BIGNUM.
*/
if (!BN_copy(ret, a)
|| !BN_uadd(ret, ret, b)
|| !equalBN("A +u B (r is a)", sum, ret)
|| !BN_copy(ret, b)
|| !BN_uadd(ret, a, ret)
|| !equalBN("A +u B (r is b)", sum, ret)
|| !BN_copy(ret, sum)
|| !BN_usub(ret, ret, a)
|| !equalBN("Sum -u A (r is a)", b, ret)
|| !BN_copy(ret, a)
|| !BN_usub(ret, sum, ret)
|| !equalBN("Sum -u A (r is b)", b, ret)
|| !BN_copy(ret, sum)
|| !BN_usub(ret, ret, b)
|| !equalBN("Sum -u B (r is a)", a, ret)
|| !BN_copy(ret, b)
|| !BN_usub(ret, sum, ret)
|| !equalBN("Sum -u B (r is b)", a, ret))
goto err;
}
/*
* Test with BN_add_word() and BN_sub_word() if |b| is small enough.
*/
b_word = BN_get_word(b);
if (!BN_is_negative(b) && b_word != (BN_ULONG)-1) {
if (!BN_copy(ret, a)
|| !BN_add_word(ret, b_word)
|| !equalBN("A + B (word)", sum, ret)
|| !BN_copy(ret, sum)
|| !BN_sub_word(ret, b_word)
|| !equalBN("Sum - B (word)", a, ret))
goto err;
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(sum);
BN_free(ret);
return st;
}
static int file_lshift1(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *lshift1 = getBN(s, "LShift1");
BIGNUM *zero = BN_new();
BIGNUM *ret = BN_new();
BIGNUM *two = BN_new();
BIGNUM *remainder = BN_new();
int st = 0;
if (a == NULL || lshift1 == NULL || zero == NULL
|| ret == NULL || two == NULL || remainder == NULL)
goto err;
BN_zero(zero);
if (!BN_set_word(two, 2)
|| !BN_add(ret, a, a)
|| !equalBN("A + A", lshift1, ret)
|| !BN_mul(ret, a, two, ctx)
|| !equalBN("A * 2", lshift1, ret)
|| !BN_div(ret, remainder, lshift1, two, ctx)
|| !equalBN("LShift1 / 2", a, ret)
|| !equalBN("LShift1 % 2", zero, remainder)
|| !BN_lshift1(ret, a)
|| !equalBN("A << 1", lshift1, ret)
|| !BN_rshift1(ret, lshift1)
|| !equalBN("LShift >> 1", a, ret)
|| !BN_rshift1(ret, lshift1)
|| !equalBN("LShift >> 1", a, ret))
goto err;
/* Set the LSB to 1 and test rshift1 again. */
if (!BN_set_bit(lshift1, 0)
|| !BN_div(ret, NULL /* rem */ , lshift1, two, ctx)
|| !equalBN("(LShift1 | 1) / 2", a, ret)
|| !BN_rshift1(ret, lshift1)
|| !equalBN("(LShift | 1) >> 1", a, ret))
goto err;
st = 1;
err:
BN_free(a);
BN_free(lshift1);
BN_free(zero);
BN_free(ret);
BN_free(two);
BN_free(remainder);
return st;
}
static int file_lshift(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *lshift = getBN(s, "LShift");
BIGNUM *ret = BN_new();
int n = 0;
int st = 0;
if (a == NULL || lshift == NULL || ret == NULL || !getint(s, &n, "N"))
goto err;
if (!BN_lshift(ret, a, n)
|| !equalBN("A << N", lshift, ret)
|| !BN_rshift(ret, lshift, n)
|| !equalBN("A >> N", a, ret))
goto err;
st = 1;
err:
BN_free(a);
BN_free(lshift);
BN_free(ret);
return st;
}
static int file_rshift(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *rshift = getBN(s, "RShift");
BIGNUM *ret = BN_new();
int n = 0;
int st = 0;
if (a == NULL || rshift == NULL || ret == NULL || !getint(s, &n, "N"))
goto err;
if (!BN_rshift(ret, a, n)
|| !equalBN("A >> N", rshift, ret))
goto err;
st = 1;
err:
BN_free(a);
BN_free(rshift);
BN_free(ret);
return st;
}
static int file_square(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *square = getBN(s, "Square");
BIGNUM *zero = BN_new();
BIGNUM *ret = BN_new();
BIGNUM *remainder = BN_new();
BIGNUM *tmp = NULL;
int st = 0;
if (a == NULL || square == NULL || zero == NULL || ret == NULL
|| remainder == NULL)
goto err;
BN_zero(zero);
if (!BN_sqr(ret, a, ctx)
|| !equalBN("A^2", square, ret)
|| !BN_mul(ret, a, a, ctx)
|| !equalBN("A * A", square, ret)
|| !BN_div(ret, remainder, square, a, ctx)
|| !equalBN("Square / A", a, ret)
|| !equalBN("Square % A", zero, remainder))
goto err;
#if HAVE_BN_SQRT
BN_set_negative(a, 0);
if (!BN_sqrt(ret, square, ctx)
|| !equalBN("sqrt(Square)", a, ret))
goto err;
/* BN_sqrt should fail on non-squares and negative numbers. */
if (!BN_is_zero(square)) {
tmp = BN_new();
if (tmp == NULL || !BN_copy(tmp, square))
goto err;
BN_set_negative(tmp, 1);
if (BN_sqrt(ret, tmp, ctx)) {
fprintf(stderr, "BN_sqrt succeeded on a negative number");
goto err;
}
ERR_clear_error();
BN_set_negative(tmp, 0);
if (BN_add(tmp, tmp, BN_value_one()))
goto err;
if (BN_sqrt(ret, tmp, ctx)) {
fprintf(stderr, "BN_sqrt succeeded on a non-square");
goto err;
}
ERR_clear_error();
}
#endif
st = 1;
err:
BN_free(a);
BN_free(square);
BN_free(zero);
BN_free(ret);
BN_free(remainder);
BN_free(tmp);
return st;
}
static int file_product(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *b = getBN(s, "B");
BIGNUM *product = getBN(s, "Product");
BIGNUM *ret = BN_new();
BIGNUM *remainder = BN_new();
BIGNUM *zero = BN_new();
int st = 0;
if (a == NULL || b == NULL || product == NULL || ret == NULL
|| remainder == NULL || zero == NULL)
goto err;
BN_zero(zero);
if (!BN_mul(ret, a, b, ctx)
|| !equalBN("A * B", product, ret)
|| !BN_div(ret, remainder, product, a, ctx)
|| !equalBN("Product / A", b, ret)
|| !equalBN("Product % A", zero, remainder)
|| !BN_div(ret, remainder, product, b, ctx)
|| !equalBN("Product / B", a, ret)
|| !equalBN("Product % B", zero, remainder))
goto err;
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(product);
BN_free(ret);
BN_free(remainder);
BN_free(zero);
return st;
}
static int file_quotient(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *b = getBN(s, "B");
BIGNUM *quotient = getBN(s, "Quotient");
BIGNUM *remainder = getBN(s, "Remainder");
BIGNUM *ret = BN_new();
BIGNUM *ret2 = BN_new();
BIGNUM *nnmod = BN_new();
BN_ULONG b_word, ret_word;
int st = 0;
if (a == NULL || b == NULL || quotient == NULL || remainder == NULL
|| ret == NULL || ret2 == NULL || nnmod == NULL)
goto err;
if (!BN_div(ret, ret2, a, b, ctx)
|| !equalBN("A / B", quotient, ret)
|| !equalBN("A % B", remainder, ret2)
|| !BN_mul(ret, quotient, b, ctx)
|| !BN_add(ret, ret, remainder)
|| !equalBN("Quotient * B + Remainder", a, ret))
goto err;
/*
* Test with BN_mod_word() and BN_div_word() if the divisor is
* small enough.
*/
b_word = BN_get_word(b);
if (!BN_is_negative(b) && b_word != (BN_ULONG)-1) {
BN_ULONG remainder_word = BN_get_word(remainder);
assert(remainder_word != (BN_ULONG)-1);
if (!BN_copy(ret, a))
goto err;
ret_word = BN_div_word(ret, b_word);
if (ret_word != remainder_word) {
#ifdef BN_DEC_FMT1
fprintf(stderr,
"Got A %% B (word) = " BN_DEC_FMT1 ", wanted " BN_DEC_FMT1 "\n",
ret_word, remainder_word);
#else
fprintf(stderr, "Got A %% B (word) mismatch\n");
#endif
goto err;
}
if (!equalBN ("A / B (word)", quotient, ret))
goto err;
ret_word = BN_mod_word(a, b_word);
if (ret_word != remainder_word) {
#ifdef BN_DEC_FMT1
fprintf(stderr,
"Got A %% B (word) = " BN_DEC_FMT1 ", wanted " BN_DEC_FMT1 "\n",
ret_word, remainder_word);
#else
fprintf(stderr, "Got A %% B (word) mismatch\n");
#endif
goto err;
}
}
/* Test BN_nnmod. */
if (!BN_is_negative(b)) {
if (!BN_copy(nnmod, remainder)
|| (BN_is_negative(nnmod) && !BN_add(nnmod, nnmod, b))
|| !BN_nnmod(ret, a, b, ctx)
|| !equalBN("A % B (non-negative)", nnmod, ret))
goto err;
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(quotient);
BN_free(remainder);
BN_free(ret);
BN_free(ret2);
BN_free(nnmod);
return st;
}
static int file_modmul(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *b = getBN(s, "B");
BIGNUM *m = getBN(s, "M");
BIGNUM *mod_mul = getBN(s, "ModMul");
BIGNUM *ret = BN_new();
int st = 0;
if (a == NULL || b == NULL || m == NULL || mod_mul == NULL || ret == NULL)
goto err;
if (!BN_mod_mul(ret, a, b, m, ctx)
|| !equalBN("A * B (mod M)", mod_mul, ret))
goto err;
if (BN_is_odd(m)) {
/* Reduce |a| and |b| and test the Montgomery version. */
BN_MONT_CTX *mont = BN_MONT_CTX_new();
BIGNUM *a_tmp = BN_new();
BIGNUM *b_tmp = BN_new();
if (mont == NULL || a_tmp == NULL || b_tmp == NULL
|| !BN_MONT_CTX_set(mont, m, ctx)
|| !BN_nnmod(a_tmp, a, m, ctx)
|| !BN_nnmod(b_tmp, b, m, ctx)
|| !BN_to_montgomery(a_tmp, a_tmp, mont, ctx)
|| !BN_to_montgomery(b_tmp, b_tmp, mont, ctx)
|| !BN_mod_mul_montgomery(ret, a_tmp, b_tmp, mont, ctx)
|| !BN_from_montgomery(ret, ret, mont, ctx)
|| !equalBN("A * B (mod M) (mont)", mod_mul, ret)) {
st = 0;
} else {
st = 1;
}
BN_MONT_CTX_free(mont);
BN_free(a_tmp);
BN_free(b_tmp);
if (st == 0)
goto err;
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(m);
BN_free(mod_mul);
BN_free(ret);
return st;
}
static int file_modexp(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *e = getBN(s, "E");
BIGNUM *m = getBN(s, "M");
BIGNUM *mod_exp = getBN(s, "ModExp");
BIGNUM *ret = BN_new();
BIGNUM *b = NULL, *c = NULL, *d = BN_new();
int st = 0;
if (a == NULL || e == NULL || m == NULL || mod_exp == NULL || ret == NULL)
goto err;
if (!BN_mod_exp(ret, a, e, m, ctx)
|| !equalBN("A ^ E (mod M)", mod_exp, ret))
goto err;
if (BN_is_odd(m)) {
if (!BN_mod_exp_mont(ret, a, e, m, ctx, NULL)
|| !equalBN("A ^ E (mod M) (mont)", mod_exp, ret)
|| !BN_mod_exp_mont_consttime(ret, a, e, m, ctx, NULL)
|| !equalBN("A ^ E (mod M) (mont const", mod_exp, ret))
goto err;
}
/* Regression test for carry propagation bug in sqr8x_reduction */
BN_hex2bn(&a, "050505050505");
BN_hex2bn(&b, "02");
BN_hex2bn(&c,
"4141414141414141414141274141414141414141414141414141414141414141"
"4141414141414141414141414141414141414141414141414141414141414141"
"4141414141414141414141800000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000000000000"
"0000000000000000000000000000000000000000000000000000000001");
BN_mod_exp(d, a, b, c, ctx);
BN_mul(e, a, a, ctx);
if (BN_cmp(d, e)) {
fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n");
goto err;
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(c);
BN_free(d);
BN_free(e);
BN_free(m);
BN_free(mod_exp);
BN_free(ret);
return st;
}
static int file_exp(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *e = getBN(s, "E");
BIGNUM *exp = getBN(s, "Exp");
BIGNUM *ret = BN_new();
int st = 0;
if (a == NULL || e == NULL || exp == NULL || ret == NULL)
goto err;
if (!BN_exp(ret, a, e, ctx)
|| !equalBN("A ^ E", exp, ret))
goto err;
st = 1;
err:
BN_free(a);
BN_free(e);
BN_free(exp);
BN_free(ret);
return st;
}
static int file_modsqrt(STANZA *s)
{
BIGNUM *a = getBN(s, "A");
BIGNUM *p = getBN(s, "P");
BIGNUM *mod_sqrt = getBN(s, "ModSqrt");
BIGNUM *ret = BN_new();
BIGNUM *ret2 = BN_new();
int st = 0;
if (a == NULL || p == NULL || mod_sqrt == NULL
|| ret == NULL || ret2 == NULL)
goto err;
/* There are two possible answers. */
if (!BN_mod_sqrt(ret, a, p, ctx) || !BN_sub(ret2, p, ret))
goto err;
if (BN_cmp(ret2, mod_sqrt) != 0
&& !equalBN("sqrt(A) (mod P)", mod_sqrt, ret))
goto err;
st = 1;
err:
BN_free(a);
BN_free(p);
BN_free(mod_sqrt);
BN_free(ret);
BN_free(ret2);
return st;
}
static int test_bn2padded()
{
#if HAVE_BN_PADDED
uint8_t zeros[256], out[256], reference[128];
BIGNUM *n = BN_new();
int st = 0;
/* Test edge case at 0. */
if (n == NULL)
goto err;
if (!BN_bn2bin_padded(NULL, 0, n)) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in an empty buffer.\n");
goto err;
}
memset(out, -1, sizeof(out));
if (!BN_bn2bin_padded(out, sizeof(out), n)) {
fprintf(stderr,
"BN_bn2bin_padded failed to encode 0 in a non-empty buffer.\n");
goto err;
}
memset(zeros, 0, sizeof(zeros));
if (memcmp(zeros, out, sizeof(out))) {
fprintf(stderr, "BN_bn2bin_padded did not zero buffer.\n");
goto err;
}
/* Test a random numbers at various byte lengths. */
for (size_t bytes = 128 - 7; bytes <= 128; bytes++) {
#define TOP_BIT_ON 0
#define BOTTOM_BIT_NOTOUCH 0
if (!BN_rand(n, bytes * 8, TOP_BIT_ON, BOTTOM_BIT_NOTOUCH)) {
ERR_print_errors_fp(stderr);
goto err;
}
if (BN_num_bytes(n) != bytes
|| BN_bn2bin(n, reference) != bytes) {
fprintf(stderr, "Bad result from BN_rand; bytes.\n");
goto err;
}
/* Empty buffer should fail. */
if (BN_bn2bin_padded(NULL, 0, n)) {
fprintf(stderr,
"BN_bn2bin_padded incorrectly succeeded on empty buffer.\n");
goto err;
}
/* One byte short should fail. */
if (BN_bn2bin_padded(out, bytes - 1, n)) {
fprintf(stderr,
"BN_bn2bin_padded incorrectly succeeded on short.\n");
goto err;
}
/* Exactly right size should encode. */
if (!BN_bn2bin_padded(out, bytes, n)
|| memcmp(out, reference, bytes) != 0) {
fprintf(stderr,
"BN_bn2bin_padded gave a bad result.\n");
goto err;
}
/* Pad up one byte extra. */
if (!BN_bn2bin_padded(out, bytes + 1, n)
|| memcmp(out + 1, reference, bytes)
|| memcmp(out, zeros, 1)) {
fprintf(stderr,
"BN_bn2bin_padded gave a bad result.\n");
goto err;
}
/* Pad up to 256. */
if (!BN_bn2bin_padded(out, sizeof(out), n)
|| memcmp(out + sizeof(out) - bytes, reference, bytes)
|| memcmp(out, zeros, sizeof(out) - bytes)) {
fprintf(stderr,
"BN_bn2bin_padded gave a bad result.\n");
goto err;
}
}
st = 1;
err:
BN_free(n);
return st;
#else
return ctx != NULL;
#endif
}
static int test_dec2bn()
{
BIGNUM *bn = NULL;
int st = 0;
int ret = parsedecBN(&bn, "0");
if (ret != 1 || !BN_is_zero(bn) || BN_is_negative(bn)) {
fprintf(stderr, "BN_dec2bn(0) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parsedecBN(&bn, "256");
if (ret != 3 || !BN_is_word(bn, 256) || BN_is_negative(bn)) {
fprintf(stderr, "BN_dec2bn(256) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parsedecBN(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn, 42) || !BN_is_negative(bn)) {
fprintf(stderr, "BN_dec2bn(42) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parsedecBN(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn) || BN_is_negative(bn)) {
fprintf(stderr, "BN_dec2bn(-0) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parsedecBN(&bn, "42trailing garbage is ignored");
if (ret != 2 || !BN_abs_is_word(bn, 42)
|| BN_is_negative(bn)) {
fprintf(stderr, "BN_dec2bn(42trailing...) gave a bad result.\n");
goto err;
}
st = 1;
err:
BN_free(bn);
return st;
}
static int test_hex2bn()
{
BIGNUM *bn = NULL;
int ret, st = 0;
ret = parseBN(&bn, "0");
if (ret != 1 || !BN_is_zero(bn) || BN_is_negative(bn)) {
fprintf(stderr, "BN_hex2bn(0) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parseBN(&bn, "256");
if (ret != 3 || !BN_is_word(bn, 0x256) || BN_is_negative(bn)) {
fprintf(stderr, "BN_hex2bn(256) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parseBN(&bn, "-42");
if (ret != 3 || !BN_abs_is_word(bn, 0x42) || !BN_is_negative(bn)) {
fprintf(stderr, "BN_hex2bn(-42) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parseBN(&bn, "-0");
if (ret != 2 || !BN_is_zero(bn) || BN_is_negative(bn)) {
fprintf(stderr, "BN_hex2bn(-0) gave a bad result.\n");
goto err;
}
BN_free(bn);
ret = parseBN(&bn, "abctrailing garbage is ignored");
if (ret != 3 || !BN_is_word(bn, 0xabc) || BN_is_negative(bn)) {
fprintf(stderr, "BN_hex2bn(abctrail...) gave a bad result.\n");
goto err;
}
st = 1;
err:
BN_free(bn);
return st;
}
static int test_asc2bn()
{
BIGNUM *bn = BN_new();
int st = 0;
if (!BN_asc2bn(&bn, "0") || !BN_is_zero(bn) || BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(0) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "256") || !BN_is_word(bn, 256) || BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(256) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "-42")
|| !BN_abs_is_word(bn, 42) || !BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(-42) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "0x1234")
|| !BN_is_word(bn, 0x1234) || BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(0x1234) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "0X1234")
|| !BN_is_word(bn, 0x1234) || BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(0X1234) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "-0xabcd")
|| !BN_abs_is_word(bn, 0xabcd) || !BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(-0xabcd) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "-0") || !BN_is_zero(bn) || BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(-0) gave a bad result.\n");
goto err;
}
if (!BN_asc2bn(&bn, "123trailing garbage is ignored")
|| !BN_is_word(bn, 123) || BN_is_negative(bn)) {
fprintf(stderr, "BN_asc2bn(123trail...) gave a bad result.\n");
goto err;
}
st = 1;
err:
BN_free(bn);
return st;
}
static const MPITEST kMPITests[] = {
{"0", "\x00\x00\x00\x00", 4},
{"1", "\x00\x00\x00\x01\x01", 5},
{"-1", "\x00\x00\x00\x01\x81", 5},
{"128", "\x00\x00\x00\x02\x00\x80", 6},
{"256", "\x00\x00\x00\x02\x01\x00", 6},
{"-256", "\x00\x00\x00\x02\x81\x00", 6},
};
static int test_mpi()
{
uint8_t scratch[8];
int i = (int)sizeof(kMPITests) / sizeof(kMPITests[0]);
const MPITEST *test = kMPITests;
size_t mpi_len, mpi_len2;
BIGNUM *bn = BN_new();
BIGNUM *bn2 = NULL;
int st = 0;
for ( ; --i >= 0; test++) {
if (!BN_asc2bn(&bn, test->base10)) {
fprintf(stderr, "Can't convert %s\n", test->base10);
goto err;
}
mpi_len = BN_bn2mpi(bn, NULL);
if (mpi_len > sizeof (scratch)) {
fprintf(stderr,
"MPI test #%u: MPI size is too large to test.\n",
(unsigned)i);
goto err;
}
mpi_len2 = BN_bn2mpi(bn, scratch);
if (mpi_len != mpi_len2) {
fprintf(stderr, "MPI test #%u: length changes.\n",
(unsigned)i);
goto err;
}
if (mpi_len != test->mpi_len
|| memcmp(test->mpi, scratch, mpi_len) != 0) {
fprintf(stderr, "MPI test #%u failed:\n", (unsigned)i);
goto err;
}
bn2 = BN_mpi2bn(scratch, mpi_len, NULL);
if (bn2 == NULL) {
fprintf(stderr, "MPI test #%u: failed to parse\n",
(unsigned)i);
goto err;
}
if (BN_cmp(bn, bn2) != 0) {
fprintf(stderr, "MPI test #%u: wrong result\n",
(unsigned)i);
BN_free(bn2);
goto err;
}
BN_free(bn2);
}
st = 1;
err:
BN_free(bn);
return st;
}
static int test_rand()
{
BIGNUM *bn = BN_new();
int st = 0;
if (bn == NULL)
return 0;
/*
* Test BN_rand for degenerate cases with |top| and |bottom| parameters.
*/
if (BN_rand(bn, 0, 0 /* top */ , 0 /* bottom */ )) {
fprintf(stderr, "BN_rand1 gave a bad result.\n");
goto err;
}
if (BN_rand(bn, 0, 1 /* top */ , 1 /* bottom */ )) {
fprintf(stderr, "BN_rand2 gave a bad result.\n");
goto err;
}
if (!BN_rand(bn, 1, 0 /* top */ , 0 /* bottom */ ) || !BN_is_word(bn, 1)) {
fprintf(stderr, "BN_rand3 gave a bad result.\n");
goto err;
}
if (BN_rand(bn, 1, 1 /* top */ , 0 /* bottom */ )) {
fprintf(stderr, "BN_rand4 gave a bad result.\n");
goto err;
}
if (!BN_rand(bn, 1, -1 /* top */ , 1 /* bottom */ ) || !BN_is_word(bn, 1)) {
fprintf(stderr, "BN_rand5 gave a bad result.\n");
goto err;
}
if (!BN_rand(bn, 2, 1 /* top */ , 0 /* bottom */ ) || !BN_is_word(bn, 3)) {
fprintf(stderr, "BN_rand6 gave a bad result.\n");
goto err;
}
st = 1;
err:
BN_free(bn);
return st;
}
static int test_negzero()
{
BIGNUM *a = BN_new();
BIGNUM *b = BN_new();
BIGNUM *c = BN_new();
BIGNUM *d = BN_new();
BIGNUM *numerator = NULL, *denominator = NULL;
int consttime, st = 0;
if (a == NULL || b == NULL || c == NULL || d == NULL)
goto err;
/* Test that BN_mul never gives negative zero. */
if (!BN_set_word(a, 1))
goto err;
BN_set_negative(a, 1);
BN_zero(b);
if (!BN_mul(c, a, b, ctx))
goto err;
if (!BN_is_zero(c) || BN_is_negative(c)) {
fprintf(stderr, "Multiplication test failed!\n");
goto err;
}
for (consttime = 0; consttime < 2; consttime++) {
numerator = BN_new();
denominator = BN_new();
if (numerator == NULL || denominator == NULL)
goto err;
if (consttime) {
BN_set_flags(numerator, BN_FLG_CONSTTIME);
BN_set_flags(denominator, BN_FLG_CONSTTIME);
}
/* Test that BN_div never gives negative zero in the quotient. */
if (!BN_set_word(numerator, 1) || !BN_set_word(denominator, 2))
goto err;
BN_set_negative(numerator, 1);
if (!BN_div(a, b, numerator, denominator, ctx))
goto err;
if (!BN_is_zero(a) || BN_is_negative(a)) {
fprintf(stderr, "Incorrect quotient (consttime = %d).\n",
consttime);
goto err;
}
/* Test that BN_div never gives negative zero in the remainder. */
if (!BN_set_word(denominator, 1))
goto err;
if (!BN_div(a, b, numerator, denominator, ctx))
goto err;
if (!BN_is_zero(b) || BN_is_negative(b)) {
fprintf(stderr, "Incorrect remainder (consttime = %d).\n",
consttime);
goto err;
}
BN_free(numerator);
BN_free(denominator);
numerator = denominator = NULL;
}
/* Test that BN_set_negative will not produce a negative zero. */
BN_zero(a);
BN_set_negative(a, 1);
if (BN_is_negative(a)) {
fprintf(stderr, "BN_set_negative produced a negative zero.\n");
goto err;
}
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(c);
BN_free(d);
BN_free(numerator);
BN_free(denominator);
return st;
}
static int test_badmod()
{
BIGNUM *a = BN_new();
BIGNUM *b = BN_new();
BIGNUM *zero = BN_new();
BN_MONT_CTX *mont = BN_MONT_CTX_new();
int st = 0;
if (a == NULL || b == NULL || zero == NULL || mont == NULL)
goto err;
BN_zero(zero);
if (BN_div(a, b, BN_value_one(), zero, ctx)) {
fprintf(stderr, "Division by zero succeeded!\n");
goto err;
}
ERR_clear_error();
if (BN_mod_mul(a, BN_value_one(), BN_value_one(), zero, ctx)) {
fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n");
goto err;
}
ERR_clear_error();
if (BN_mod_exp(a, BN_value_one(), BN_value_one(), zero, ctx)) {
fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n");
goto err;
}
ERR_clear_error();
if (BN_mod_exp_mont(a, BN_value_one(), BN_value_one(), zero, ctx, NULL)) {
fprintf(stderr, "BN_mod_exp_mont with zero modulus succeeded!\n");
goto err;
}
ERR_clear_error();
if (BN_mod_exp_mont_consttime(a, BN_value_one(), BN_value_one(),
zero, ctx, NULL)) {
fprintf(stderr,
"BN_mod_exp_mont_consttime with zero modulus succeeded!\n");
goto err;
}
ERR_clear_error();
if (BN_MONT_CTX_set(mont, zero, ctx)) {
fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n");
goto err;
}
ERR_clear_error();
/* Some operations also may not be used with an even modulus. */
if (!BN_set_word(b, 16))
goto err;
if (BN_MONT_CTX_set(mont, b, ctx)) {
fprintf(stderr,
"BN_MONT_CTX_set succeeded for even modulus!\n");
goto err;
}
ERR_clear_error();
if (BN_mod_exp_mont(a, BN_value_one(), BN_value_one(), b, ctx, NULL)) {
fprintf(stderr,
"BN_mod_exp_mont with even modulus succeeded!\n");
goto err;
}
ERR_clear_error();
if (BN_mod_exp_mont_consttime(a, BN_value_one(), BN_value_one(),
b, ctx, NULL)) {
fprintf(stderr,
"BN_mod_exp_mont_consttime with even modulus succeeded!\n");
goto err;
}
ERR_clear_error();
st = 1;
err:
BN_free(a);
BN_free(b);
BN_free(zero);
BN_MONT_CTX_free(mont);
return st;
}
static int test_expmodzero()
{
BIGNUM *zero = BN_new();
BIGNUM *a = BN_new();
BIGNUM *r = BN_new();
int st = 0;
if (zero == NULL || a == NULL || r == NULL || !BN_rand(a, 1024, 0, 0))
goto err;
BN_zero(zero);
if (!BN_mod_exp(r, a, zero, BN_value_one(), NULL)
|| !BN_is_zero(r)
|| !BN_mod_exp_mont(r, a, zero, BN_value_one(), NULL, NULL)
|| !BN_is_zero(r)
|| !BN_mod_exp_mont_consttime(r, a, zero, BN_value_one(), NULL, NULL)
|| !BN_is_zero(r)
|| !BN_mod_exp_mont_word(r, 42, zero, BN_value_one(), NULL, NULL)
|| !BN_is_zero(r))
goto err;
st = 1;
err:
BN_free(zero);
BN_free(a);
BN_free(r);
return st;
}
static int test_smallprime()
{
static const int kBits = 10;
BIGNUM *r = BN_new();
int st = 0;
if (r == NULL
|| !BN_generate_prime_ex(r, (int)kBits, 0, NULL, NULL, NULL))
goto err;
if (BN_num_bits(r) != kBits) {
fprintf(stderr, "Expected %u bit prime, got %u bit number\n",
kBits, BN_num_bits(r));
goto err;
}
st = 1;
err:
BN_free(r);
return st;
}
/* Delete leading and trailing spaces from a string */
static char *strip_spaces(char *p)
{
char *q;
/* Skip over leading spaces */
while (*p && isspace(*p))
p++;
if (!*p)
return NULL;
for (q = p + strlen(p) - 1; q != p && isspace(*q); )
*q-- = '\0';
return *p ? p : NULL;
}
/*
* Read next test stanza; return 1 if found, 0 on EOF or error.
*/
static int readstanza(STANZA *s, int *linesread)
{
PAIR *pp = s->pairs;
char *p, *equals, *key, *value;
char buff[1024];
while (fgets(buff, sizeof(buff), fp) != NULL) {
(*linesread)++;
if ((p = strchr(buff, '\n')) == NULL) {
fprintf(stderr, "Line %d too long.\n", s->start);
return 0;
}
*p = '\0';
/* Blank line marks end of tests. */
if (buff[0] == '\0')
break;
/* Lines starting with a pound sign are ignored. */
if (buff[0] == '#')
continue;
if ((equals = strchr(buff, '=')) == NULL) {
fprintf(stderr, "Line %d missing equals.\n", s->start);
return 0;
}
*equals++ = '\0';
key = strip_spaces(buff);
value = strip_spaces(equals);
if (key == NULL || value == NULL) {
fprintf(stderr, "Line %d missing field.\n", s->start);
return 0;
}
s->numpairs++;
if (s->numpairs >= MAXPAIRS) {
fprintf(stderr, "Line %d too many lines\n", s->start);
return 0;
}
pp->key = OPENSSL_strdup(key);
pp->value = OPENSSL_strdup(value);
pp++;
}
/* If we read anything, return ok. */
return 1;
}
static void clearstanza(STANZA *s)
{
PAIR *pp = s->pairs;
int i = s->numpairs;
int start = s->start;
for ( ; --i >= 0; pp++) {
OPENSSL_free(pp->key);
OPENSSL_free(pp->value);
}
memset(s, 0, sizeof(*s));
s->start = start;
}
static int file_test_run(STANZA *s)
{
static const FILETEST filetests[] = {
{"Sum", file_sum},
{"LShift1", file_lshift1},
{"LShift", file_lshift},
{"RShift", file_rshift},
{"Square", file_square},
{"Product", file_product},
{"Quotient", file_quotient},
{"ModMul", file_modmul},
{"ModExp", file_modexp},
{"Exp", file_exp},
{"ModSqrt", file_modsqrt},
};
int numtests = OSSL_NELEM(filetests);
const FILETEST *tp = filetests;
for ( ; --numtests >= 0; tp++) {
if (findattr(s, tp->name) != NULL)
return tp->func(s);
}
fprintf(stderr, "Unknown test at %d\n", s->start);
return 0;
}
static int file_tests()
{
STANZA s;
int linesread = 0, result = 0;
/* Read test file. */
memset(&s, 0, sizeof(s));
while (!feof(fp) && readstanza(&s, &linesread)) {
if (s.numpairs == 0)
continue;
if (!file_test_run(&s)) {
if (result == 0)
fprintf(stderr, "Test at %d failed\n", s.start);
goto err;
}
clearstanza(&s);
s.start = linesread;
}
result = 1;
err:
return result;
}
int test_main(int argc, char *argv[])
{
static const char rnd_seed[] =
"If not seeded, BN_generate_prime might fail";
int result = 0;
if (argc != 2) {
fprintf(stderr, "%s TEST_FILE\n", argv[0]);
return 1;
}
ADD_TEST(test_sub);
ADD_TEST(test_div_recip);
ADD_TEST(test_mod);
ADD_TEST(test_modexp_mont5);
ADD_TEST(test_kronecker);
ADD_TEST(test_rand);
ADD_TEST(test_bn2padded);
ADD_TEST(test_dec2bn);
ADD_TEST(test_hex2bn);
ADD_TEST(test_asc2bn);
ADD_TEST(test_mpi);
ADD_TEST(test_negzero);
ADD_TEST(test_badmod);
ADD_TEST(test_expmodzero);
ADD_TEST(test_smallprime);
#ifndef OPENSSL_NO_EC2M
ADD_TEST(test_gf2m_add);
ADD_TEST(test_gf2m_mod);
ADD_TEST(test_gf2m_mul);
ADD_TEST(test_gf2m_sqr);
ADD_TEST(test_gf2m_modinv);
ADD_TEST(test_gf2m_moddiv);
ADD_TEST(test_gf2m_modexp);
ADD_TEST(test_gf2m_modsqrt);
ADD_TEST(test_gf2m_modsolvequad);
#endif
ADD_TEST(file_tests);
RAND_seed(rnd_seed, sizeof rnd_seed);
ctx = BN_CTX_new();
TEST_check(ctx != NULL);
fp = fopen(argv[1], "r");
TEST_check(fp != NULL);
result = run_tests(argv[0]);
fclose(fp);
BN_CTX_free(ctx);
return result;
}