openssl/crypto/ec/asm/ecp_nistz256-armv8.pl

1565 lines
38 KiB
Perl
Raw Normal View History

#!/usr/bin/env perl
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# ECP_NISTZ256 module for ARMv8.
#
# February 2015.
#
# Original ECP_NISTZ256 submission targeting x86_64 is detailed in
# http://eprint.iacr.org/2013/816.
#
# with/without -DECP_NISTZ256_ASM
# Apple A7 +120-360%
# Cortex-A53 +120-400%
# Cortex-A57 +120-350%
# X-Gene +200-330%
# Denver +140-400%
#
# Ranges denote minimum and maximum improvement coefficients depending
# on benchmark. Lower coefficients are for ECDSA sign, server-side
# operation. Keep in mind that +400% means 5x improvement.
$flavour = shift;
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
{
my ($rp,$ap,$bp,$bi,$a0,$a1,$a2,$a3,$t0,$t1,$t2,$t3,$poly1,$poly3,
$acc0,$acc1,$acc2,$acc3,$acc4,$acc5) =
map("x$_",(0..17,19,20));
my ($acc6,$acc7)=($ap,$bp); # used in __ecp_nistz256_sqr_mont
$code.=<<___;
#include "arm_arch.h"
.text
___
########################################################################
# Convert ecp_nistz256_table.c to layout expected by ecp_nistz_gather_w7
#
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
open TABLE,"<ecp_nistz256_table.c" or
open TABLE,"<${dir}../ecp_nistz256_table.c" or
die "failed to open ecp_nistz256_table.c:",$!;
use integer;
foreach(<TABLE>) {
s/TOBN\(\s*(0x[0-9a-f]+),\s*(0x[0-9a-f]+)\s*\)/push @arr,hex($2),hex($1)/geo;
}
close TABLE;
# See ecp_nistz256_table.c for explanation for why it's 64*16*37.
# 64*16*37-1 is because $#arr returns last valid index or @arr, not
# amount of elements.
die "insane number of elements" if ($#arr != 64*16*37-1);
$code.=<<___;
.globl ecp_nistz256_precomputed
.type ecp_nistz256_precomputed,%object
.align 12
ecp_nistz256_precomputed:
___
########################################################################
# this conversion smashes P256_POINT_AFFINE by individual bytes with
# 64 byte interval, similar to
# 1111222233334444
# 1234123412341234
for(1..37) {
@tbl = splice(@arr,0,64*16);
for($i=0;$i<64;$i++) {
undef @line;
for($j=0;$j<64;$j++) {
push @line,(@tbl[$j*16+$i/4]>>(($i%4)*8))&0xff;
}
$code.=".byte\t";
$code.=join(',',map { sprintf "0x%02x",$_} @line);
$code.="\n";
}
}
$code.=<<___;
.size ecp_nistz256_precomputed,.-ecp_nistz256_precomputed
.align 5
.Lpoly:
.quad 0xffffffffffffffff,0x00000000ffffffff,0x0000000000000000,0xffffffff00000001
.LRR: // 2^512 mod P precomputed for NIST P256 polynomial
.quad 0x0000000000000003,0xfffffffbffffffff,0xfffffffffffffffe,0x00000004fffffffd
.Lone_mont:
.quad 0x0000000000000001,0xffffffff00000000,0xffffffffffffffff,0x00000000fffffffe
.Lone:
.quad 1,0,0,0
.asciz "ECP_NISTZ256 for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
// void ecp_nistz256_to_mont(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_to_mont
.type ecp_nistz256_to_mont,%function
.align 6
ecp_nistz256_to_mont:
stp x29,x30,[sp,#-32]!
add x29,sp,#0
stp x19,x20,[sp,#16]
ldr $bi,.LRR // bp[0]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
adr $bp,.LRR // &bp[0]
bl __ecp_nistz256_mul_mont
ldp x19,x20,[sp,#16]
ldp x29,x30,[sp],#32
ret
.size ecp_nistz256_to_mont,.-ecp_nistz256_to_mont
// void ecp_nistz256_from_mont(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_from_mont
.type ecp_nistz256_from_mont,%function
.align 4
ecp_nistz256_from_mont:
stp x29,x30,[sp,#-32]!
add x29,sp,#0
stp x19,x20,[sp,#16]
mov $bi,#1 // bp[0]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
adr $bp,.Lone // &bp[0]
bl __ecp_nistz256_mul_mont
ldp x19,x20,[sp,#16]
ldp x29,x30,[sp],#32
ret
.size ecp_nistz256_from_mont,.-ecp_nistz256_from_mont
// void ecp_nistz256_mul_mont(BN_ULONG x0[4],const BN_ULONG x1[4],
// const BN_ULONG x2[4]);
.globl ecp_nistz256_mul_mont
.type ecp_nistz256_mul_mont,%function
.align 4
ecp_nistz256_mul_mont:
stp x29,x30,[sp,#-32]!
add x29,sp,#0
stp x19,x20,[sp,#16]
ldr $bi,[$bp] // bp[0]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
bl __ecp_nistz256_mul_mont
ldp x19,x20,[sp,#16]
ldp x29,x30,[sp],#32
ret
.size ecp_nistz256_mul_mont,.-ecp_nistz256_mul_mont
// void ecp_nistz256_sqr_mont(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_sqr_mont
.type ecp_nistz256_sqr_mont,%function
.align 4
ecp_nistz256_sqr_mont:
stp x29,x30,[sp,#-32]!
add x29,sp,#0
stp x19,x20,[sp,#16]
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
bl __ecp_nistz256_sqr_mont
ldp x19,x20,[sp,#16]
ldp x29,x30,[sp],#32
ret
.size ecp_nistz256_sqr_mont,.-ecp_nistz256_sqr_mont
// void ecp_nistz256_add(BN_ULONG x0[4],const BN_ULONG x1[4],
// const BN_ULONG x2[4]);
.globl ecp_nistz256_add
.type ecp_nistz256_add,%function
.align 4
ecp_nistz256_add:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $t0,$t1,[$bp]
ldp $acc2,$acc3,[$ap,#16]
ldp $t2,$t3,[$bp,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
bl __ecp_nistz256_add
ldp x29,x30,[sp],#16
ret
.size ecp_nistz256_add,.-ecp_nistz256_add
// void ecp_nistz256_div_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_div_by_2
.type ecp_nistz256_div_by_2,%function
.align 4
ecp_nistz256_div_by_2:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
bl __ecp_nistz256_div_by_2
ldp x29,x30,[sp],#16
ret
.size ecp_nistz256_div_by_2,.-ecp_nistz256_div_by_2
// void ecp_nistz256_mul_by_2(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_mul_by_2
.type ecp_nistz256_mul_by_2,%function
.align 4
ecp_nistz256_mul_by_2:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
bl __ecp_nistz256_add // ret = a+a // 2*a
ldp x29,x30,[sp],#16
ret
.size ecp_nistz256_mul_by_2,.-ecp_nistz256_mul_by_2
// void ecp_nistz256_mul_by_3(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_mul_by_3
.type ecp_nistz256_mul_by_3,%function
.align 4
ecp_nistz256_mul_by_3:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
mov $a0,$acc0
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
bl __ecp_nistz256_add // ret = a+a // 2*a
mov $t0,$a0
mov $t1,$a1
mov $t2,$a2
mov $t3,$a3
bl __ecp_nistz256_add // ret += a // 2*a+a=3*a
ldp x29,x30,[sp],#16
ret
.size ecp_nistz256_mul_by_3,.-ecp_nistz256_mul_by_3
// void ecp_nistz256_sub(BN_ULONG x0[4],const BN_ULONG x1[4],
// const BN_ULONG x2[4]);
.globl ecp_nistz256_sub
.type ecp_nistz256_sub,%function
.align 4
ecp_nistz256_sub:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
ldp $acc0,$acc1,[$ap]
ldp $acc2,$acc3,[$ap,#16]
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
bl __ecp_nistz256_sub_from
ldp x29,x30,[sp],#16
ret
.size ecp_nistz256_sub,.-ecp_nistz256_sub
// void ecp_nistz256_neg(BN_ULONG x0[4],const BN_ULONG x1[4]);
.globl ecp_nistz256_neg
.type ecp_nistz256_neg,%function
.align 4
ecp_nistz256_neg:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
mov $bp,$ap
mov $acc0,xzr // a = 0
mov $acc1,xzr
mov $acc2,xzr
mov $acc3,xzr
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
bl __ecp_nistz256_sub_from
ldp x29,x30,[sp],#16
ret
.size ecp_nistz256_neg,.-ecp_nistz256_neg
// note that __ecp_nistz256_mul_mont expects a[0-3] input pre-loaded
// to $a0-$a3 and b[0] - to $bi
.type __ecp_nistz256_mul_mont,%function
.align 4
__ecp_nistz256_mul_mont:
mul $acc0,$a0,$bi // a[0]*b[0]
umulh $t0,$a0,$bi
mul $acc1,$a1,$bi // a[1]*b[0]
umulh $t1,$a1,$bi
mul $acc2,$a2,$bi // a[2]*b[0]
umulh $t2,$a2,$bi
mul $acc3,$a3,$bi // a[3]*b[0]
umulh $t3,$a3,$bi
ldr $bi,[$bp,#8] // b[1]
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
lsl $t0,$acc0,#32
adcs $acc2,$acc2,$t1
lsr $t1,$acc0,#32
adcs $acc3,$acc3,$t2
adc $acc4,xzr,$t3
mov $acc5,xzr
___
for($i=1;$i<4;$i++) {
# Reduction iteration is normally performed by accumulating
# result of multiplication of modulus by "magic" digit [and
# omitting least significant word, which is guaranteed to
# be 0], but thanks to special form of modulus and "magic"
# digit being equal to least significant word, it can be
# performed with additions and subtractions alone. Indeed:
#
# ffff0001.00000000.0000ffff.ffffffff
# * abcdefgh
# + xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
#
# Now observing that ff..ff*x = (2^n-1)*x = 2^n*x-x, we
# rewrite above as:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.abcdefgh
# + abcdefgh.abcdefgh.0000abcd.efgh0000.00000000
# - 0000abcd.efgh0000.00000000.00000000.abcdefgh
#
# or marking redundant operations:
#
# xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx.--------
# + abcdefgh.abcdefgh.0000abcd.efgh0000.--------
# - 0000abcd.efgh0000.--------.--------.--------
$code.=<<___;
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
mul $t0,$a0,$bi // lo(a[0]*b[i])
adcs $acc1,$acc2,$t1
mul $t1,$a1,$bi // lo(a[1]*b[i])
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
mul $t2,$a2,$bi // lo(a[2]*b[i])
adcs $acc3,$acc4,$t3
mul $t3,$a3,$bi // lo(a[3]*b[i])
adc $acc4,$acc5,xzr
adds $acc0,$acc0,$t0 // accumulate low parts of multiplication
umulh $t0,$a0,$bi // hi(a[0]*b[i])
adcs $acc1,$acc1,$t1
umulh $t1,$a1,$bi // hi(a[1]*b[i])
adcs $acc2,$acc2,$t2
umulh $t2,$a2,$bi // hi(a[2]*b[i])
adcs $acc3,$acc3,$t3
umulh $t3,$a3,$bi // hi(a[3]*b[i])
adc $acc4,$acc4,xzr
___
$code.=<<___ if ($i<3);
ldr $bi,[$bp,#8*($i+1)] // b[$i+1]
___
$code.=<<___;
adds $acc1,$acc1,$t0 // accumulate high parts of multiplication
lsl $t0,$acc0,#32
adcs $acc2,$acc2,$t1
lsr $t1,$acc0,#32
adcs $acc3,$acc3,$t2
adcs $acc4,$acc4,$t3
adc $acc5,xzr,xzr
___
}
$code.=<<___;
// last reduction
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
adcs $acc1,$acc2,$t1
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
adcs $acc3,$acc4,$t3
adc $acc4,$acc5,xzr
adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus
sbcs $t1,$acc1,$poly1
sbcs $t2,$acc2,xzr
sbcs $t3,$acc3,$poly3
sbcs xzr,$acc4,xzr // did it borrow?
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $acc1,$acc1,$t1,lo
csel $acc2,$acc2,$t2,lo
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,lo
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_mul_mont,.-__ecp_nistz256_mul_mont
// note that __ecp_nistz256_sqr_mont expects a[0-3] input pre-loaded
// to $a0-$a3
.type __ecp_nistz256_sqr_mont,%function
.align 4
__ecp_nistz256_sqr_mont:
// | | | | | |a1*a0| |
// | | | | |a2*a0| | |
// | |a3*a2|a3*a0| | | |
// | | | |a2*a1| | | |
// | | |a3*a1| | | | |
// *| | | | | | | | 2|
// +|a3*a3|a2*a2|a1*a1|a0*a0|
// |--+--+--+--+--+--+--+--|
// |A7|A6|A5|A4|A3|A2|A1|A0|, where Ax is $accx, i.e. follow $accx
//
// "can't overflow" below mark carrying into high part of
// multiplication result, which can't overflow, because it
// can never be all ones.
mul $acc1,$a1,$a0 // a[1]*a[0]
umulh $t1,$a1,$a0
mul $acc2,$a2,$a0 // a[2]*a[0]
umulh $t2,$a2,$a0
mul $acc3,$a3,$a0 // a[3]*a[0]
umulh $acc4,$a3,$a0
adds $acc2,$acc2,$t1 // accumulate high parts of multiplication
mul $t0,$a2,$a1 // a[2]*a[1]
umulh $t1,$a2,$a1
adcs $acc3,$acc3,$t2
mul $t2,$a3,$a1 // a[3]*a[1]
umulh $t3,$a3,$a1
adc $acc4,$acc4,xzr // can't overflow
mul $acc5,$a3,$a2 // a[3]*a[2]
umulh $acc6,$a3,$a2
adds $t1,$t1,$t2 // accumulate high parts of multiplication
mul $acc0,$a0,$a0 // a[0]*a[0]
adc $t2,$t3,xzr // can't overflow
adds $acc3,$acc3,$t0 // accumulate low parts of multiplication
umulh $a0,$a0,$a0
adcs $acc4,$acc4,$t1
mul $t1,$a1,$a1 // a[1]*a[1]
adcs $acc5,$acc5,$t2
umulh $a1,$a1,$a1
adc $acc6,$acc6,xzr // can't overflow
adds $acc1,$acc1,$acc1 // acc[1-6]*=2
mul $t2,$a2,$a2 // a[2]*a[2]
adcs $acc2,$acc2,$acc2
umulh $a2,$a2,$a2
adcs $acc3,$acc3,$acc3
mul $t3,$a3,$a3 // a[3]*a[3]
adcs $acc4,$acc4,$acc4
umulh $a3,$a3,$a3
adcs $acc5,$acc5,$acc5
adcs $acc6,$acc6,$acc6
adc $acc7,xzr,xzr
adds $acc1,$acc1,$a0 // +a[i]*a[i]
adcs $acc2,$acc2,$t1
adcs $acc3,$acc3,$a1
adcs $acc4,$acc4,$t2
adcs $acc5,$acc5,$a2
lsl $t0,$acc0,#32
adcs $acc6,$acc6,$t3
lsr $t1,$acc0,#32
adc $acc7,$acc7,$a3
___
for($i=0;$i<3;$i++) { # reductions, see commentary in
# multiplication for details
$code.=<<___;
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
adcs $acc1,$acc2,$t1
lsl $t0,$acc0,#32
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
lsr $t1,$acc0,#32
adc $acc3,$t3,xzr // can't overflow
___
}
$code.=<<___;
subs $t2,$acc0,$t0 // "*0xffff0001"
sbc $t3,$acc0,$t1
adds $acc0,$acc1,$t0 // +=acc[0]<<96 and omit acc[0]
adcs $acc1,$acc2,$t1
adcs $acc2,$acc3,$t2 // +=acc[0]*0xffff0001
adc $acc3,$t3,xzr // can't overflow
adds $acc0,$acc0,$acc4 // accumulate upper half
adcs $acc1,$acc1,$acc5
adcs $acc2,$acc2,$acc6
adcs $acc3,$acc3,$acc7
adc $acc4,xzr,xzr
adds $t0,$acc0,#1 // subs $t0,$acc0,#-1 // tmp = ret-modulus
sbcs $t1,$acc1,$poly1
sbcs $t2,$acc2,xzr
sbcs $t3,$acc3,$poly3
sbcs xzr,$acc4,xzr // did it borrow?
csel $acc0,$acc0,$t0,lo // ret = borrow ? ret : ret-modulus
csel $acc1,$acc1,$t1,lo
csel $acc2,$acc2,$t2,lo
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,lo
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_sqr_mont,.-__ecp_nistz256_sqr_mont
// Note that __ecp_nistz256_add expects both input vectors pre-loaded to
// $a0-$a3 and $t0-$t3. This is done because it's used in multiple
// contexts, e.g. in multiplication by 2 and 3...
.type __ecp_nistz256_add,%function
.align 4
__ecp_nistz256_add:
adds $acc0,$acc0,$t0 // ret = a+b
adcs $acc1,$acc1,$t1
adcs $acc2,$acc2,$t2
adcs $acc3,$acc3,$t3
adc $ap,xzr,xzr // zap $ap
adds $t0,$acc0,#1 // subs $t0,$a0,#-1 // tmp = ret-modulus
sbcs $t1,$acc1,$poly1
sbcs $t2,$acc2,xzr
sbc $t3,$acc3,$poly3
cmp $ap,xzr // did addition carry?
csel $acc0,$acc0,$t0,eq // ret = carry ? ret-modulus : ret
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,eq
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_add,.-__ecp_nistz256_add
.type __ecp_nistz256_sub_from,%function
.align 4
__ecp_nistz256_sub_from:
ldp $t0,$t1,[$bp]
ldp $t2,$t3,[$bp,#16]
subs $acc0,$acc0,$t0 // ret = a-b
sbcs $acc1,$acc1,$t1
sbcs $acc2,$acc2,$t2
sbcs $acc3,$acc3,$t3
sbc $ap,xzr,xzr // zap $ap
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus
adcs $t1,$acc1,$poly1
adcs $t2,$acc2,xzr
adc $t3,$acc3,$poly3
cmp $ap,xzr // did subtraction borrow?
csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,eq
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_sub_from,.-__ecp_nistz256_sub_from
.type __ecp_nistz256_sub_morf,%function
.align 4
__ecp_nistz256_sub_morf:
ldp $t0,$t1,[$bp]
ldp $t2,$t3,[$bp,#16]
subs $acc0,$t0,$acc0 // ret = b-a
sbcs $acc1,$t1,$acc1
sbcs $acc2,$t2,$acc2
sbcs $acc3,$t3,$acc3
sbc $ap,xzr,xzr // zap $ap
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = ret+modulus
adcs $t1,$acc1,$poly1
adcs $t2,$acc2,xzr
adc $t3,$acc3,$poly3
cmp $ap,xzr // did subtraction borrow?
csel $acc0,$acc0,$t0,eq // ret = borrow ? ret+modulus : ret
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
stp $acc0,$acc1,[$rp]
csel $acc3,$acc3,$t3,eq
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_sub_morf,.-__ecp_nistz256_sub_morf
.type __ecp_nistz256_div_by_2,%function
.align 4
__ecp_nistz256_div_by_2:
subs $t0,$acc0,#1 // adds $t0,$a0,#-1 // tmp = a+modulus
adcs $t1,$acc1,$poly1
adcs $t2,$acc2,xzr
adcs $t3,$acc3,$poly3
adc $ap,xzr,xzr // zap $ap
tst $acc0,#1 // is a even?
csel $acc0,$acc0,$t0,eq // ret = even ? a : a+modulus
csel $acc1,$acc1,$t1,eq
csel $acc2,$acc2,$t2,eq
csel $acc3,$acc3,$t3,eq
csel $ap,xzr,$ap,eq
lsr $acc0,$acc0,#1 // ret >>= 1
orr $acc0,$acc0,$acc1,lsl#63
lsr $acc1,$acc1,#1
orr $acc1,$acc1,$acc2,lsl#63
lsr $acc2,$acc2,#1
orr $acc2,$acc2,$acc3,lsl#63
lsr $acc3,$acc3,#1
stp $acc0,$acc1,[$rp]
orr $acc3,$acc3,$ap,lsl#63
stp $acc2,$acc3,[$rp,#16]
ret
.size __ecp_nistz256_div_by_2,.-__ecp_nistz256_div_by_2
___
########################################################################
# following subroutines are "literal" implemetation of those found in
# ecp_nistz256.c
#
########################################################################
# void ecp_nistz256_point_double(P256_POINT *out,const P256_POINT *inp);
#
{
my ($S,$M,$Zsqr,$tmp0)=map(32*$_,(0..3));
# above map() describes stack layout with 4 temporary
# 256-bit vectors on top.
my ($rp_real,$ap_real) = map("x$_",(21,22));
$code.=<<___;
.globl ecp_nistz256_point_double
.type ecp_nistz256_point_double,%function
.align 5
ecp_nistz256_point_double:
stp x29,x30,[sp,#-48]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
sub sp,sp,#32*4
ldp $acc0,$acc1,[$ap,#32]
mov $rp_real,$rp
ldp $acc2,$acc3,[$ap,#48]
mov $ap_real,$ap
ldr $poly1,.Lpoly+8
mov $t0,$acc0
ldr $poly3,.Lpoly+24
mov $t1,$acc1
ldp $a0,$a1,[$ap_real,#64] // forward load for p256_sqr_mont
mov $t2,$acc2
mov $t3,$acc3
ldp $a2,$a3,[$ap_real,#64+16]
add $rp,sp,#$S
bl __ecp_nistz256_add // p256_mul_by_2(S, in_y);
add $rp,sp,#$Zsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Zsqr, in_z);
ldp $t0,$t1,[$ap_real]
ldp $t2,$t3,[$ap_real,#16]
mov $a0,$acc0 // put Zsqr aside for p256_sub
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
add $rp,sp,#$M
bl __ecp_nistz256_add // p256_add(M, Zsqr, in_x);
add $bp,$ap_real,#0
mov $acc0,$a0 // restore Zsqr
mov $acc1,$a1
ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont
mov $acc2,$a2
mov $acc3,$a3
ldp $a2,$a3,[sp,#$S+16]
add $rp,sp,#$Zsqr
bl __ecp_nistz256_sub_morf // p256_sub(Zsqr, in_x, Zsqr);
add $rp,sp,#$S
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(S, S);
ldr $bi,[$ap_real,#32]
ldp $a0,$a1,[$ap_real,#64]
ldp $a2,$a3,[$ap_real,#64+16]
add $bp,$ap_real,#32
add $rp,sp,#$tmp0
bl __ecp_nistz256_mul_mont // p256_mul_mont(tmp0, in_z, in_y);
mov $t0,$acc0
mov $t1,$acc1
ldp $a0,$a1,[sp,#$S] // forward load for p256_sqr_mont
mov $t2,$acc2
mov $t3,$acc3
ldp $a2,$a3,[sp,#$S+16]
add $rp,$rp_real,#64
bl __ecp_nistz256_add // p256_mul_by_2(res_z, tmp0);
add $rp,sp,#$tmp0
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(tmp0, S);
ldr $bi,[sp,#$Zsqr] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$M]
ldp $a2,$a3,[sp,#$M+16]
add $rp,$rp_real,#32
bl __ecp_nistz256_div_by_2 // p256_div_by_2(res_y, tmp0);
add $bp,sp,#$Zsqr
add $rp,sp,#$M
bl __ecp_nistz256_mul_mont // p256_mul_mont(M, M, Zsqr);
mov $t0,$acc0 // duplicate M
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
mov $a0,$acc0 // put M aside
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
add $rp,sp,#$M
bl __ecp_nistz256_add
mov $t0,$a0 // restore M
mov $t1,$a1
ldr $bi,[$ap_real] // forward load for p256_mul_mont
mov $t2,$a2
ldp $a0,$a1,[sp,#$S]
mov $t3,$a3
ldp $a2,$a3,[sp,#$S+16]
bl __ecp_nistz256_add // p256_mul_by_3(M, M);
add $bp,$ap_real,#0
add $rp,sp,#$S
bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, in_x);
mov $t0,$acc0
mov $t1,$acc1
ldp $a0,$a1,[sp,#$M] // forward load for p256_sqr_mont
mov $t2,$acc2
mov $t3,$acc3
ldp $a2,$a3,[sp,#$M+16]
add $rp,sp,#$tmp0
bl __ecp_nistz256_add // p256_mul_by_2(tmp0, S);
add $rp,$rp_real,#0
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(res_x, M);
add $bp,sp,#$tmp0
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, tmp0);
add $bp,sp,#$S
add $rp,sp,#$S
bl __ecp_nistz256_sub_morf // p256_sub(S, S, res_x);
ldr $bi,[sp,#$M]
mov $a0,$acc0 // copy S
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
add $bp,sp,#$M
bl __ecp_nistz256_mul_mont // p256_mul_mont(S, S, M);
add $bp,$rp_real,#32
add $rp,$rp_real,#32
bl __ecp_nistz256_sub_from // p256_sub(res_y, S, res_y);
add sp,x29,#0 // destroy frame
ldp x19,x20,[x29,#16]
ldp x21,x22,[x29,#32]
ldp x29,x30,[sp],#48
ret
.size ecp_nistz256_point_double,.-ecp_nistz256_point_double
___
}
########################################################################
# void ecp_nistz256_point_add(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT *in2);
{
my ($res_x,$res_y,$res_z,
$H,$Hsqr,$R,$Rsqr,$Hcub,
$U1,$U2,$S1,$S2)=map(32*$_,(0..11));
my ($Z1sqr, $Z2sqr) = ($Hsqr, $Rsqr);
# above map() describes stack layout with 12 temporary
# 256-bit vectors on top.
my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("x$_",(21..26));
$code.=<<___;
.globl ecp_nistz256_point_add
.type ecp_nistz256_point_add,%function
.align 5
ecp_nistz256_point_add:
stp x29,x30,[sp,#-80]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
sub sp,sp,#32*12
ldp $a0,$a1,[$bp]
ldp $a2,$a3,[$bp,#16]
ldp $t0,$t1,[$bp,#32]
ldp $t2,$t3,[$bp,#48]
mov $rp_real,$rp
mov $ap_real,$ap
mov $bp_real,$bp
orr $a0,$a0,$a1
orr $a2,$a2,$a3
ldp $acc0,$acc1,[$ap]
orr $t0,$t0,$t1
orr $t2,$t2,$t3
ldp $acc2,$acc3,[$ap,#16]
orr $a0,$a0,$a2
orr $t2,$t0,$t2
ldp $t0,$t1,[$ap,#32]
orr $in2infty,$a0,$t2
cmp $in2infty,#0
ldp $t2,$t3,[$ap,#48]
csetm $in2infty,ne // !in2infty
ldp $a0,$a1,[$bp_real,#64] // forward load for p256_sqr_mont
orr $acc0,$acc0,$acc1
orr $acc2,$acc2,$acc3
ldp $a2,$a3,[$bp_real,#64+16]
orr $t0,$t0,$t1
orr $t2,$t2,$t3
orr $acc0,$acc0,$acc2
orr $t0,$t0,$t2
orr $in1infty,$acc0,$t0
cmp $in1infty,#0
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
csetm $in1infty,ne // !in1infty
add $rp,sp,#$Z2sqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z2sqr, in2_z);
ldp $a0,$a1,[$ap_real,#64]
ldp $a2,$a3,[$ap_real,#64+16]
add $rp,sp,#$Z1sqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z);
ldr $bi,[$bp_real,#64]
ldp $a0,$a1,[sp,#$Z2sqr]
ldp $a2,$a3,[sp,#$Z2sqr+16]
add $bp,$bp_real,#64
add $rp,sp,#$S1
bl __ecp_nistz256_mul_mont // p256_mul_mont(S1, Z2sqr, in2_z);
ldr $bi,[$ap_real,#64]
ldp $a0,$a1,[sp,#$Z1sqr]
ldp $a2,$a3,[sp,#$Z1sqr+16]
add $bp,$ap_real,#64
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z);
ldr $bi,[$ap_real,#32]
ldp $a0,$a1,[sp,#$S1]
ldp $a2,$a3,[sp,#$S1+16]
add $bp,$ap_real,#32
add $rp,sp,#$S1
bl __ecp_nistz256_mul_mont // p256_mul_mont(S1, S1, in1_y);
ldr $bi,[$bp_real,#32]
ldp $a0,$a1,[sp,#$S2]
ldp $a2,$a3,[sp,#$S2+16]
add $bp,$bp_real,#32
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y);
add $bp,sp,#$S1
ldr $bi,[sp,#$Z2sqr] // forward load for p256_mul_mont
ldp $a0,$a1,[$ap_real]
ldp $a2,$a3,[$ap_real,#16]
add $rp,sp,#$R
bl __ecp_nistz256_sub_from // p256_sub(R, S2, S1);
orr $acc0,$acc0,$acc1 // see if result is zero
orr $acc2,$acc2,$acc3
orr $temp,$acc0,$acc2
add $bp,sp,#$Z2sqr
add $rp,sp,#$U1
bl __ecp_nistz256_mul_mont // p256_mul_mont(U1, in1_x, Z2sqr);
ldr $bi,[sp,#$Z1sqr]
ldp $a0,$a1,[$bp_real]
ldp $a2,$a3,[$bp_real,#16]
add $bp,sp,#$Z1sqr
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in2_x, Z1sqr);
add $bp,sp,#$U1
ldp $a0,$a1,[sp,#$R] // forward load for p256_sqr_mont
ldp $a2,$a3,[sp,#$R+16]
add $rp,sp,#$H
bl __ecp_nistz256_sub_from // p256_sub(H, U2, U1);
orr $acc0,$acc0,$acc1 // see if result is zero
orr $acc2,$acc2,$acc3
orr $acc0,$acc0,$acc2
tst $acc0,$acc0
b.ne .Ladd_proceed // is_equal(U1,U2)?
tst $in1infty,$in2infty
b.eq .Ladd_proceed // (in1infty || in2infty)?
tst $temp,$temp
b.eq .Ladd_proceed // is_equal(S1,S2)?
eor $a0,$a0,$a0
eor $a1,$a1,$a1
stp $a0,$a1,[$rp_real]
stp $a0,$a1,[$rp_real,#16]
stp $a0,$a1,[$rp_real,#32]
stp $a0,$a1,[$rp_real,#48]
stp $a0,$a1,[$rp_real,#64]
stp $a0,$a1,[$rp_real,#80]
b .Ladd_done
.align 4
.Ladd_proceed:
add $rp,sp,#$Rsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R);
ldr $bi,[$ap_real,#64]
ldp $a0,$a1,[sp,#$H]
ldp $a2,$a3,[sp,#$H+16]
add $bp,$ap_real,#64
add $rp,sp,#$res_z
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z);
ldp $a0,$a1,[sp,#$H]
ldp $a2,$a3,[sp,#$H+16]
add $rp,sp,#$Hsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H);
ldr $bi,[$bp_real,#64]
ldp $a0,$a1,[sp,#$res_z]
ldp $a2,$a3,[sp,#$res_z+16]
add $bp,$bp_real,#64
add $rp,sp,#$res_z
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, res_z, in2_z);
ldr $bi,[sp,#$H]
ldp $a0,$a1,[sp,#$Hsqr]
ldp $a2,$a3,[sp,#$Hsqr+16]
add $bp,sp,#$H
add $rp,sp,#$Hcub
bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H);
ldr $bi,[sp,#$Hsqr]
ldp $a0,$a1,[sp,#$U1]
ldp $a2,$a3,[sp,#$U1+16]
add $bp,sp,#$Hsqr
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, U1, Hsqr);
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
add $rp,sp,#$Hsqr
bl __ecp_nistz256_add // p256_mul_by_2(Hsqr, U2);
add $bp,sp,#$Rsqr
add $rp,sp,#$res_x
bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr);
add $bp,sp,#$Hcub
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub);
add $bp,sp,#$U2
ldr $bi,[sp,#$Hcub] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$S1]
ldp $a2,$a3,[sp,#$S1+16]
add $rp,sp,#$res_y
bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x);
add $bp,sp,#$Hcub
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S1, Hcub);
ldr $bi,[sp,#$R]
ldp $a0,$a1,[sp,#$res_y]
ldp $a2,$a3,[sp,#$res_y+16]
add $bp,sp,#$R
add $rp,sp,#$res_y
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R);
add $bp,sp,#$S2
bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2);
ldp $a0,$a1,[sp,#$res_x] // res
ldp $a2,$a3,[sp,#$res_x+16]
ldp $t0,$t1,[$bp_real] // in2
ldp $t2,$t3,[$bp_real,#16]
___
for($i=0;$i<64;$i+=32) { # conditional moves
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // !$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
ldp $a0,$a1,[sp,#$res_x+$i+32] // res
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // !$in2intfy, remember?
ldp $a2,$a3,[sp,#$res_x+$i+48]
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
ldp $t0,$t1,[$bp_real,#$i+32] // in2
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
ldp $t2,$t3,[$bp_real,#$i+48]
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
___
}
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // !$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // !$in2intfy, remember?
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
.Ladd_done:
add sp,x29,#0 // destroy frame
ldp x19,x20,[x29,#16]
ldp x21,x22,[x29,#32]
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x29,x30,[sp],#80
ret
.size ecp_nistz256_point_add,.-ecp_nistz256_point_add
___
}
########################################################################
# void ecp_nistz256_point_add_affine(P256_POINT *out,const P256_POINT *in1,
# const P256_POINT_AFFINE *in2);
{
my ($res_x,$res_y,$res_z,
$U2,$S2,$H,$R,$Hsqr,$Hcub,$Rsqr)=map(32*$_,(0..9));
my $Z1sqr = $S2;
# above map() describes stack layout with 10 temporary
# 256-bit vectors on top.
my ($rp_real,$ap_real,$bp_real,$in1infty,$in2infty,$temp)=map("x$_",(21..26));
$code.=<<___;
.globl ecp_nistz256_point_add_affine
.type ecp_nistz256_point_add_affine,%function
.align 5
ecp_nistz256_point_add_affine:
stp x29,x30,[sp,#-80]!
add x29,sp,#0
stp x19,x20,[sp,#16]
stp x21,x22,[sp,#32]
stp x23,x24,[sp,#48]
stp x25,x26,[sp,#64]
sub sp,sp,#32*10
mov $rp_real,$rp
mov $ap_real,$ap
mov $bp_real,$bp
ldr $poly1,.Lpoly+8
ldr $poly3,.Lpoly+24
ldp $a0,$a1,[$ap]
ldp $a2,$a3,[$ap,#16]
ldp $t0,$t1,[$ap,#32]
ldp $t2,$t3,[$ap,#48]
orr $a0,$a0,$a1
orr $a2,$a2,$a3
orr $t0,$t0,$t1
orr $t2,$t2,$t3
orr $a0,$a0,$a2
orr $t0,$t0,$t2
orr $in1infty,$a0,$t0
cmp $in1infty,#0
csetm $in1infty,ne // !in1infty
ldp $a0,$a1,[$bp]
ldp $a2,$a3,[$bp,#16]
ldp $t0,$t1,[$bp,#32]
ldp $t2,$t3,[$bp,#48]
orr $a0,$a0,$a1
orr $a2,$a2,$a3
orr $t0,$t0,$t1
orr $t2,$t2,$t3
orr $a0,$a0,$a2
orr $t0,$t0,$t2
orr $in2infty,$a0,$t0
cmp $in2infty,#0
csetm $in2infty,ne // !in2infty
ldp $a0,$a1,[$ap_real,#64]
ldp $a2,$a3,[$ap_real,#64+16]
add $rp,sp,#$Z1sqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Z1sqr, in1_z);
mov $a0,$acc0
mov $a1,$acc1
mov $a2,$acc2
mov $a3,$acc3
ldr $bi,[$bp_real]
add $bp,$bp_real,#0
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, Z1sqr, in2_x);
add $bp,$ap_real,#0
ldr $bi,[$ap_real,#64] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$Z1sqr]
ldp $a2,$a3,[sp,#$Z1sqr+16]
add $rp,sp,#$H
bl __ecp_nistz256_sub_from // p256_sub(H, U2, in1_x);
add $bp,$ap_real,#64
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, Z1sqr, in1_z);
ldr $bi,[$ap_real,#64]
ldp $a0,$a1,[sp,#$H]
ldp $a2,$a3,[sp,#$H+16]
add $bp,$ap_real,#64
add $rp,sp,#$res_z
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_z, H, in1_z);
ldr $bi,[$bp_real,#32]
ldp $a0,$a1,[sp,#$S2]
ldp $a2,$a3,[sp,#$S2+16]
add $bp,$bp_real,#32
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, S2, in2_y);
add $bp,$ap_real,#32
ldp $a0,$a1,[sp,#$H] // forward load for p256_sqr_mont
ldp $a2,$a3,[sp,#$H+16]
add $rp,sp,#$R
bl __ecp_nistz256_sub_from // p256_sub(R, S2, in1_y);
add $rp,sp,#$Hsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Hsqr, H);
ldp $a0,$a1,[sp,#$R]
ldp $a2,$a3,[sp,#$R+16]
add $rp,sp,#$Rsqr
bl __ecp_nistz256_sqr_mont // p256_sqr_mont(Rsqr, R);
ldr $bi,[sp,#$H]
ldp $a0,$a1,[sp,#$Hsqr]
ldp $a2,$a3,[sp,#$Hsqr+16]
add $bp,sp,#$H
add $rp,sp,#$Hcub
bl __ecp_nistz256_mul_mont // p256_mul_mont(Hcub, Hsqr, H);
ldr $bi,[$ap_real]
ldp $a0,$a1,[sp,#$Hsqr]
ldp $a2,$a3,[sp,#$Hsqr+16]
add $bp,$ap_real,#0
add $rp,sp,#$U2
bl __ecp_nistz256_mul_mont // p256_mul_mont(U2, in1_x, Hsqr);
mov $t0,$acc0
mov $t1,$acc1
mov $t2,$acc2
mov $t3,$acc3
add $rp,sp,#$Hsqr
bl __ecp_nistz256_add // p256_mul_by_2(Hsqr, U2);
add $bp,sp,#$Rsqr
add $rp,sp,#$res_x
bl __ecp_nistz256_sub_morf // p256_sub(res_x, Rsqr, Hsqr);
add $bp,sp,#$Hcub
bl __ecp_nistz256_sub_from // p256_sub(res_x, res_x, Hcub);
add $bp,sp,#$U2
ldr $bi,[$ap_real,#32] // forward load for p256_mul_mont
ldp $a0,$a1,[sp,#$Hcub]
ldp $a2,$a3,[sp,#$Hcub+16]
add $rp,sp,#$res_y
bl __ecp_nistz256_sub_morf // p256_sub(res_y, U2, res_x);
add $bp,$ap_real,#32
add $rp,sp,#$S2
bl __ecp_nistz256_mul_mont // p256_mul_mont(S2, in1_y, Hcub);
ldr $bi,[sp,#$R]
ldp $a0,$a1,[sp,#$res_y]
ldp $a2,$a3,[sp,#$res_y+16]
add $bp,sp,#$R
add $rp,sp,#$res_y
bl __ecp_nistz256_mul_mont // p256_mul_mont(res_y, res_y, R);
add $bp,sp,#$S2
bl __ecp_nistz256_sub_from // p256_sub(res_y, res_y, S2);
ldp $a0,$a1,[sp,#$res_x] // res
ldp $a2,$a3,[sp,#$res_x+16]
ldp $t0,$t1,[$bp_real] // in2
ldp $t2,$t3,[$bp_real,#16]
___
for($i=0;$i<64;$i+=32) { # conditional moves
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // !$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
ldp $a0,$a1,[sp,#$res_x+$i+32] // res
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // !$in2intfy, remember?
ldp $a2,$a3,[sp,#$res_x+$i+48]
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
ldp $t0,$t1,[$bp_real,#$i+32] // in2
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
ldp $t2,$t3,[$bp_real,#$i+48]
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
___
}
$code.=<<___;
ldp $acc0,$acc1,[$ap_real,#$i] // in1
cmp $in1infty,#0 // !$in1intfy, remember?
ldp $acc2,$acc3,[$ap_real,#$i+16]
csel $t0,$a0,$t0,ne
csel $t1,$a1,$t1,ne
csel $t2,$a2,$t2,ne
csel $t3,$a3,$t3,ne
cmp $in2infty,#0 // !$in2intfy, remember?
csel $acc0,$t0,$acc0,ne
csel $acc1,$t1,$acc1,ne
csel $acc2,$t2,$acc2,ne
csel $acc3,$t3,$acc3,ne
stp $acc0,$acc1,[$rp_real,#$i]
stp $acc2,$acc3,[$rp_real,#$i+16]
add sp,x29,#0 // destroy frame
ldp x19,x20,[x29,#16]
ldp x21,x22,[x29,#32]
ldp x23,x24,[x29,#48]
ldp x25,x26,[x29,#64]
ldp x29,x30,[sp],#80
ret
.size ecp_nistz256_point_add_affine,.-ecp_nistz256_point_add_affine
___
} }
########################################################################
# scatter-gather subroutines
{
my ($out,$inp,$index,$mask)=map("x$_",(0..3));
$code.=<<___;
// void ecp_nistz256_scatter_w5(void *x0,const P256_POINT *x1,
// int x2);
.globl ecp_nistz256_scatter_w5
.type ecp_nistz256_scatter_w5,%function
.align 4
ecp_nistz256_scatter_w5:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
add $out,$out,$index,lsl#2
ldp x4,x5,[$inp] // X
ldp x6,x7,[$inp,#16]
str w4,[$out,#64*0-4]
lsr x4,x4,#32
str w5,[$out,#64*1-4]
lsr x5,x5,#32
str w6,[$out,#64*2-4]
lsr x6,x6,#32
str w7,[$out,#64*3-4]
lsr x7,x7,#32
str w4,[$out,#64*4-4]
str w5,[$out,#64*5-4]
str w6,[$out,#64*6-4]
str w7,[$out,#64*7-4]
add $out,$out,#64*8
ldp x4,x5,[$inp,#32] // Y
ldp x6,x7,[$inp,#48]
str w4,[$out,#64*0-4]
lsr x4,x4,#32
str w5,[$out,#64*1-4]
lsr x5,x5,#32
str w6,[$out,#64*2-4]
lsr x6,x6,#32
str w7,[$out,#64*3-4]
lsr x7,x7,#32
str w4,[$out,#64*4-4]
str w5,[$out,#64*5-4]
str w6,[$out,#64*6-4]
str w7,[$out,#64*7-4]
add $out,$out,#64*8
ldp x4,x5,[$inp,#64] // Z
ldp x6,x7,[$inp,#80]
str w4,[$out,#64*0-4]
lsr x4,x4,#32
str w5,[$out,#64*1-4]
lsr x5,x5,#32
str w6,[$out,#64*2-4]
lsr x6,x6,#32
str w7,[$out,#64*3-4]
lsr x7,x7,#32
str w4,[$out,#64*4-4]
str w5,[$out,#64*5-4]
str w6,[$out,#64*6-4]
str w7,[$out,#64*7-4]
ldr x29,[sp],#16
ret
.size ecp_nistz256_scatter_w5,.-ecp_nistz256_scatter_w5
// void ecp_nistz256_gather_w5(P256_POINT *x0,const void *x1,
// int x2);
.globl ecp_nistz256_gather_w5
.type ecp_nistz256_gather_w5,%function
.align 4
ecp_nistz256_gather_w5:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
cmp $index,xzr
csetm x3,ne
add $index,$index,x3
add $inp,$inp,$index,lsl#2
ldr w4,[$inp,#64*0]
ldr w5,[$inp,#64*1]
ldr w6,[$inp,#64*2]
ldr w7,[$inp,#64*3]
ldr w8,[$inp,#64*4]
ldr w9,[$inp,#64*5]
ldr w10,[$inp,#64*6]
ldr w11,[$inp,#64*7]
add $inp,$inp,#64*8
orr x4,x4,x8,lsl#32
orr x5,x5,x9,lsl#32
orr x6,x6,x10,lsl#32
orr x7,x7,x11,lsl#32
csel x4,x4,xzr,ne
csel x5,x5,xzr,ne
csel x6,x6,xzr,ne
csel x7,x7,xzr,ne
stp x4,x5,[$out] // X
stp x6,x7,[$out,#16]
ldr w4,[$inp,#64*0]
ldr w5,[$inp,#64*1]
ldr w6,[$inp,#64*2]
ldr w7,[$inp,#64*3]
ldr w8,[$inp,#64*4]
ldr w9,[$inp,#64*5]
ldr w10,[$inp,#64*6]
ldr w11,[$inp,#64*7]
add $inp,$inp,#64*8
orr x4,x4,x8,lsl#32
orr x5,x5,x9,lsl#32
orr x6,x6,x10,lsl#32
orr x7,x7,x11,lsl#32
csel x4,x4,xzr,ne
csel x5,x5,xzr,ne
csel x6,x6,xzr,ne
csel x7,x7,xzr,ne
stp x4,x5,[$out,#32] // Y
stp x6,x7,[$out,#48]
ldr w4,[$inp,#64*0]
ldr w5,[$inp,#64*1]
ldr w6,[$inp,#64*2]
ldr w7,[$inp,#64*3]
ldr w8,[$inp,#64*4]
ldr w9,[$inp,#64*5]
ldr w10,[$inp,#64*6]
ldr w11,[$inp,#64*7]
orr x4,x4,x8,lsl#32
orr x5,x5,x9,lsl#32
orr x6,x6,x10,lsl#32
orr x7,x7,x11,lsl#32
csel x4,x4,xzr,ne
csel x5,x5,xzr,ne
csel x6,x6,xzr,ne
csel x7,x7,xzr,ne
stp x4,x5,[$out,#64] // Z
stp x6,x7,[$out,#80]
ldr x29,[sp],#16
ret
.size ecp_nistz256_gather_w5,.-ecp_nistz256_gather_w5
// void ecp_nistz256_scatter_w7(void *x0,const P256_POINT_AFFINE *x1,
// int x2);
.globl ecp_nistz256_scatter_w7
.type ecp_nistz256_scatter_w7,%function
.align 4
ecp_nistz256_scatter_w7:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
add $out,$out,$index
mov $index,#64/8
.Loop_scatter_w7:
ldr x3,[$inp],#8
subs $index,$index,#1
prfm pstl1strm,[$out,#4096+64*0]
prfm pstl1strm,[$out,#4096+64*1]
prfm pstl1strm,[$out,#4096+64*2]
prfm pstl1strm,[$out,#4096+64*3]
prfm pstl1strm,[$out,#4096+64*4]
prfm pstl1strm,[$out,#4096+64*5]
prfm pstl1strm,[$out,#4096+64*6]
prfm pstl1strm,[$out,#4096+64*7]
strb w3,[$out,#64*0-1]
lsr x3,x3,#8
strb w3,[$out,#64*1-1]
lsr x3,x3,#8
strb w3,[$out,#64*2-1]
lsr x3,x3,#8
strb w3,[$out,#64*3-1]
lsr x3,x3,#8
strb w3,[$out,#64*4-1]
lsr x3,x3,#8
strb w3,[$out,#64*5-1]
lsr x3,x3,#8
strb w3,[$out,#64*6-1]
lsr x3,x3,#8
strb w3,[$out,#64*7-1]
add $out,$out,#64*8
b.ne .Loop_scatter_w7
ldr x29,[sp],#16
ret
.size ecp_nistz256_scatter_w7,.-ecp_nistz256_scatter_w7
// void ecp_nistz256_gather_w7(P256_POINT_AFFINE *x0,const void *x1,
// int x2);
.globl ecp_nistz256_gather_w7
.type ecp_nistz256_gather_w7,%function
.align 4
ecp_nistz256_gather_w7:
stp x29,x30,[sp,#-16]!
add x29,sp,#0
cmp $index,xzr
csetm x3,ne
add $index,$index,x3
add $inp,$inp,$index
mov $index,#64/8
nop
.Loop_gather_w7:
ldrb w4,[$inp,#64*0]
prfm pldl1strm,[$inp,#4096+64*0]
subs $index,$index,#1
ldrb w5,[$inp,#64*1]
prfm pldl1strm,[$inp,#4096+64*1]
ldrb w6,[$inp,#64*2]
prfm pldl1strm,[$inp,#4096+64*2]
ldrb w7,[$inp,#64*3]
prfm pldl1strm,[$inp,#4096+64*3]
ldrb w8,[$inp,#64*4]
prfm pldl1strm,[$inp,#4096+64*4]
ldrb w9,[$inp,#64*5]
prfm pldl1strm,[$inp,#4096+64*5]
ldrb w10,[$inp,#64*6]
prfm pldl1strm,[$inp,#4096+64*6]
ldrb w11,[$inp,#64*7]
prfm pldl1strm,[$inp,#4096+64*7]
add $inp,$inp,#64*8
orr x4,x4,x5,lsl#8
orr x6,x6,x7,lsl#8
orr x8,x8,x9,lsl#8
orr x4,x4,x6,lsl#16
orr x10,x10,x11,lsl#8
orr x4,x4,x8,lsl#32
orr x4,x4,x10,lsl#48
and x4,x4,x3
str x4,[$out],#8
b.ne .Loop_gather_w7
ldr x29,[sp],#16
ret
.size ecp_nistz256_gather_w7,.-ecp_nistz256_gather_w7
___
}
foreach (split("\n",$code)) {
s/\`([^\`]*)\`/eval $1/ge;
print $_,"\n";
}
close STDOUT; # enforce flush