openssl/crypto/engine/eng_devcrypto.c

689 lines
20 KiB
C
Raw Normal View History

/*
* Copyright 2017-2018 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include "e_os.h"
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <assert.h>
#include <openssl/evp.h>
#include <openssl/err.h>
#include <openssl/engine.h>
#include <openssl/objects.h>
#include <crypto/cryptodev.h>
#include "internal/engine.h"
#ifdef CRYPTO_ALGORITHM_MIN
# define CHECK_BSD_STYLE_MACROS
#endif
/*
* ONE global file descriptor for all sessions. This allows operations
* such as digest session data copying (see digest_copy()), but is also
* saner... why re-open /dev/crypto for every session?
*/
static int cfd;
/******************************************************************************
*
* Ciphers
*
* Because they all do the same basic operation, we have only one set of
* method functions for them all to share, and a mapping table between
* NIDs and cryptodev IDs, with all the necessary size data.
*
*****/
struct cipher_ctx {
struct session_op sess;
/* to pass from init to do_cipher */
const unsigned char *iv;
int op; /* COP_ENCRYPT or COP_DECRYPT */
};
static const struct cipher_data_st {
int nid;
int blocksize;
int keylen;
int ivlen;
int flags;
int devcryptoid;
} cipher_data[] = {
#ifndef OPENSSL_NO_DES
{ NID_des_cbc, 8, 8, 8, EVP_CIPH_CBC_MODE, CRYPTO_DES_CBC },
{ NID_des_ede3_cbc, 8, 24, 8, EVP_CIPH_CBC_MODE, CRYPTO_3DES_CBC },
#endif
#ifndef OPENSSL_NO_BF
{ NID_bf_cbc, 8, 16, 8, EVP_CIPH_CBC_MODE, CRYPTO_BLF_CBC },
#endif
#ifndef OPENSSL_NO_CAST
{ NID_cast5_cbc, 8, 16, 8, EVP_CIPH_CBC_MODE, CRYPTO_CAST_CBC },
#endif
{ NID_aes_128_cbc, 16, 128 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_AES_CBC },
{ NID_aes_192_cbc, 16, 192 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_AES_CBC },
{ NID_aes_256_cbc, 16, 256 / 8, 16, EVP_CIPH_CBC_MODE, CRYPTO_AES_CBC },
#ifndef OPENSSL_NO_RC4
{ NID_rc4, 1, 16, 0, EVP_CIPH_STREAM_CIPHER, CRYPTO_ARC4 },
#endif
#if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_AES_CTR)
{ NID_aes_128_ctr, 16, 128 / 8, 16, EVP_CIPH_CTR_MODE, CRYPTO_AES_CTR },
{ NID_aes_192_ctr, 16, 192 / 8, 16, EVP_CIPH_CTR_MODE, CRYPTO_AES_CTR },
{ NID_aes_256_ctr, 16, 256 / 8, 16, EVP_CIPH_CTR_MODE, CRYPTO_AES_CTR },
#endif
#if 0 /* Not yet supported */
{ NID_aes_128_xts, 16, 128 / 8 * 2, 16, EVP_CIPH_XTS_MODE, CRYPTO_AES_XTS },
{ NID_aes_256_xts, 16, 256 / 8 * 2, 16, EVP_CIPH_XTS_MODE, CRYPTO_AES_XTS },
#endif
#if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_AES_ECB)
{ NID_aes_128_ecb, 16, 128 / 8, 16, EVP_CIPH_ECB_MODE, CRYPTO_AES_ECB },
{ NID_aes_192_ecb, 16, 192 / 8, 16, EVP_CIPH_ECB_MODE, CRYPTO_AES_ECB },
{ NID_aes_256_ecb, 16, 256 / 8, 16, EVP_CIPH_ECB_MODE, CRYPTO_AES_ECB },
#endif
#if 0 /* Not yet supported */
{ NID_aes_128_gcm, 16, 128 / 8, 16, EVP_CIPH_GCM_MODE, CRYPTO_AES_GCM },
{ NID_aes_192_gcm, 16, 192 / 8, 16, EVP_CIPH_GCM_MODE, CRYPTO_AES_GCM },
{ NID_aes_256_gcm, 16, 256 / 8, 16, EVP_CIPH_GCM_MODE, CRYPTO_AES_GCM },
#endif
#ifndef OPENSSL_NO_CAMELLIA
{ NID_camellia_128_cbc, 16, 128 / 8, 16, EVP_CIPH_CBC_MODE,
CRYPTO_CAMELLIA_CBC },
{ NID_camellia_192_cbc, 16, 192 / 8, 16, EVP_CIPH_CBC_MODE,
CRYPTO_CAMELLIA_CBC },
{ NID_camellia_256_cbc, 16, 256 / 8, 16, EVP_CIPH_CBC_MODE,
CRYPTO_CAMELLIA_CBC },
#endif
};
static size_t get_cipher_data_index(int nid)
{
size_t i;
for (i = 0; i < OSSL_NELEM(cipher_data); i++)
if (nid == cipher_data[i].nid)
return i;
/*
* Code further down must make sure that only NIDs in the table above
* are used. If any other NID reaches this function, there's a grave
* coding error further down.
*/
assert("Code that never should be reached" == NULL);
return -1;
}
static const struct cipher_data_st *get_cipher_data(int nid)
{
return &cipher_data[get_cipher_data_index(nid)];
}
/*
* Following are the three necessary functions to map OpenSSL functionality
* with cryptodev.
*/
static int cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
const unsigned char *iv, int enc)
{
struct cipher_ctx *cipher_ctx =
(struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
const struct cipher_data_st *cipher_d =
get_cipher_data(EVP_CIPHER_CTX_nid(ctx));
memset(&cipher_ctx->sess, 0, sizeof(cipher_ctx->sess));
cipher_ctx->sess.cipher = cipher_d->devcryptoid;
cipher_ctx->sess.keylen = cipher_d->keylen;
cipher_ctx->sess.key = (void *)key;
cipher_ctx->op = enc ? COP_ENCRYPT : COP_DECRYPT;
if (ioctl(cfd, CIOCGSESSION, &cipher_ctx->sess) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
return 1;
}
static int cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
const unsigned char *in, size_t inl)
{
struct cipher_ctx *cipher_ctx =
(struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
struct crypt_op cryp;
#if !defined(COP_FLAG_WRITE_IV)
unsigned char saved_iv[EVP_MAX_IV_LENGTH];
#endif
memset(&cryp, 0, sizeof(cryp));
cryp.ses = cipher_ctx->sess.ses;
cryp.len = inl;
cryp.src = (void *)in;
cryp.dst = (void *)out;
cryp.iv = (void *)EVP_CIPHER_CTX_iv_noconst(ctx);
cryp.op = cipher_ctx->op;
#if !defined(COP_FLAG_WRITE_IV)
cryp.flags = 0;
if (EVP_CIPHER_CTX_iv_length(ctx) > 0) {
assert(inl >= EVP_CIPHER_CTX_iv_length(ctx));
if (!EVP_CIPHER_CTX_encrypting(ctx)) {
unsigned char *ivptr = in + inl - EVP_CIPHER_CTX_iv_length(ctx);
memcpy(saved_iv, ivptr, EVP_CIPHER_CTX_iv_length(ctx));
}
}
#else
cryp.flags = COP_FLAG_WRITE_IV;
#endif
if (ioctl(cfd, CIOCCRYPT, &cryp) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
#if !defined(COP_FLAG_WRITE_IV)
if (EVP_CIPHER_CTX_iv_length(ctx) > 0) {
unsigned char *ivptr = saved_iv;
assert(inl >= EVP_CIPHER_CTX_iv_length(ctx));
if (!EVP_CIPHER_CTX_encrypting(ctx))
ivptr = out + inl - EVP_CIPHER_CTX_iv_length(ctx);
memcpy(EVP_CIPHER_CTX_iv_noconst(ctx), ivptr,
EVP_CIPHER_CTX_iv_length(ctx));
}
#endif
return 1;
}
static int cipher_cleanup(EVP_CIPHER_CTX *ctx)
{
struct cipher_ctx *cipher_ctx =
(struct cipher_ctx *)EVP_CIPHER_CTX_get_cipher_data(ctx);
if (ioctl(cfd, CIOCFSESSION, &cipher_ctx->sess.ses) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
return 1;
}
/*
* Keep a table of known nids and associated methods.
* Note that known_cipher_nids[] isn't necessarily indexed the same way as
* cipher_data[] above, which known_cipher_methods[] is.
*/
static int known_cipher_nids[OSSL_NELEM(cipher_data)];
static int known_cipher_nids_amount = -1; /* -1 indicates not yet initialised */
static EVP_CIPHER *known_cipher_methods[OSSL_NELEM(cipher_data)] = { NULL, };
static void prepare_cipher_methods(void)
{
size_t i;
struct session_op sess;
memset(&sess, 0, sizeof(sess));
sess.key = (void *)"01234567890123456789012345678901234567890123456789";
for (i = 0, known_cipher_nids_amount = 0;
i < OSSL_NELEM(cipher_data); i++) {
/*
* Check that the algo is really availably by trying to open and close
* a session.
*/
sess.cipher = cipher_data[i].devcryptoid;
sess.keylen = cipher_data[i].keylen;
if (ioctl(cfd, CIOCGSESSION, &sess) < 0
|| ioctl(cfd, CIOCFSESSION, &sess.ses) < 0)
continue;
if ((known_cipher_methods[i] =
EVP_CIPHER_meth_new(cipher_data[i].nid,
cipher_data[i].blocksize,
cipher_data[i].keylen)) == NULL
|| !EVP_CIPHER_meth_set_iv_length(known_cipher_methods[i],
cipher_data[i].ivlen)
|| !EVP_CIPHER_meth_set_flags(known_cipher_methods[i],
cipher_data[i].flags
| EVP_CIPH_FLAG_DEFAULT_ASN1)
|| !EVP_CIPHER_meth_set_init(known_cipher_methods[i], cipher_init)
|| !EVP_CIPHER_meth_set_do_cipher(known_cipher_methods[i],
cipher_do_cipher)
|| !EVP_CIPHER_meth_set_cleanup(known_cipher_methods[i],
cipher_cleanup)
|| !EVP_CIPHER_meth_set_impl_ctx_size(known_cipher_methods[i],
sizeof(struct cipher_ctx))) {
EVP_CIPHER_meth_free(known_cipher_methods[i]);
known_cipher_methods[i] = NULL;
} else {
known_cipher_nids[known_cipher_nids_amount++] =
cipher_data[i].nid;
}
}
}
static const EVP_CIPHER *get_cipher_method(int nid)
{
size_t i = get_cipher_data_index(nid);
if (i == (size_t)-1)
return NULL;
return known_cipher_methods[i];
}
static int get_cipher_nids(const int **nids)
{
*nids = known_cipher_nids;
return known_cipher_nids_amount;
}
static void destroy_cipher_method(int nid)
{
size_t i = get_cipher_data_index(nid);
EVP_CIPHER_meth_free(known_cipher_methods[i]);
known_cipher_methods[i] = NULL;
}
static void destroy_all_cipher_methods(void)
{
size_t i;
for (i = 0; i < OSSL_NELEM(cipher_data); i++)
destroy_cipher_method(cipher_data[i].nid);
}
static int devcrypto_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
const int **nids, int nid)
{
if (cipher == NULL)
return get_cipher_nids(nids);
*cipher = get_cipher_method(nid);
return *cipher != NULL;
}
/*
* We only support digests if the cryptodev implementation supports multiple
* data updates and session copying. Otherwise, we would be forced to maintain
* a cache, which is perilous if there's a lot of data coming in (if someone
* wants to checksum an OpenSSL tarball, for example).
*/
#if defined(CIOCCPHASH) && defined(COP_FLAG_UPDATE) && defined(COP_FLAG_FINAL)
#define IMPLEMENT_DIGEST
/******************************************************************************
*
* Digests
*
* Because they all do the same basic operation, we have only one set of
* method functions for them all to share, and a mapping table between
* NIDs and cryptodev IDs, with all the necessary size data.
*
*****/
struct digest_ctx {
struct session_op sess;
int init;
};
static const struct digest_data_st {
int nid;
int digestlen;
int devcryptoid;
} digest_data[] = {
#ifndef OPENSSL_NO_MD5
{ NID_md5, 16, CRYPTO_MD5 },
#endif
{ NID_sha1, 20, CRYPTO_SHA1 },
#ifndef OPENSSL_NO_RMD160
# if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_RIPEMD160)
{ NID_ripemd160, 20, CRYPTO_RIPEMD160 },
# endif
#endif
#if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_224)
{ NID_sha224, 224 / 8, CRYPTO_SHA2_224 },
#endif
#if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_256)
{ NID_sha256, 256 / 8, CRYPTO_SHA2_256 },
#endif
#if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_384)
{ NID_sha384, 384 / 8, CRYPTO_SHA2_384 },
#endif
#if !defined(CHECK_BSD_STYLE_MACROS) || defined(CRYPTO_SHA2_512)
{ NID_sha512, 512 / 8, CRYPTO_SHA2_512 },
#endif
};
static size_t get_digest_data_index(int nid)
{
size_t i;
for (i = 0; i < OSSL_NELEM(digest_data); i++)
if (nid == digest_data[i].nid)
return i;
/*
* Code further down must make sure that only NIDs in the table above
* are used. If any other NID reaches this function, there's a grave
* coding error further down.
*/
assert("Code that never should be reached" == NULL);
return -1;
}
static const struct digest_data_st *get_digest_data(int nid)
{
return &digest_data[get_digest_data_index(nid)];
}
/*
* Following are the four necessary functions to map OpenSSL functionality
* with cryptodev.
*/
static int digest_init(EVP_MD_CTX *ctx)
{
struct digest_ctx *digest_ctx =
(struct digest_ctx *)EVP_MD_CTX_md_data(ctx);
const struct digest_data_st *digest_d =
get_digest_data(EVP_MD_CTX_type(ctx));
digest_ctx->init = 1;
memset(&digest_ctx->sess, 0, sizeof(digest_ctx->sess));
digest_ctx->sess.mac = digest_d->devcryptoid;
if (ioctl(cfd, CIOCGSESSION, &digest_ctx->sess) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
return 1;
}
static int digest_op(struct digest_ctx *ctx, const void *src, size_t srclen,
void *res, unsigned int flags)
{
struct crypt_op cryp;
memset(&cryp, 0, sizeof(cryp));
cryp.ses = ctx->sess.ses;
cryp.len = srclen;
cryp.src = (void *)src;
cryp.dst = NULL;
cryp.mac = res;
cryp.flags = flags;
return ioctl(cfd, CIOCCRYPT, &cryp);
}
static int digest_update(EVP_MD_CTX *ctx, const void *data, size_t count)
{
struct digest_ctx *digest_ctx =
(struct digest_ctx *)EVP_MD_CTX_md_data(ctx);
if (count == 0)
return 1;
if (digest_op(digest_ctx, data, count, NULL, COP_FLAG_UPDATE) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
return 1;
}
static int digest_final(EVP_MD_CTX *ctx, unsigned char *md)
{
struct digest_ctx *digest_ctx =
(struct digest_ctx *)EVP_MD_CTX_md_data(ctx);
if (digest_op(digest_ctx, NULL, 0, md, COP_FLAG_FINAL) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
if (ioctl(cfd, CIOCFSESSION, &digest_ctx->sess.ses) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
return 1;
}
static int digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
{
struct digest_ctx *digest_from =
(struct digest_ctx *)EVP_MD_CTX_md_data(from);
struct digest_ctx *digest_to =
(struct digest_ctx *)EVP_MD_CTX_md_data(to);
struct cphash_op cphash;
if (digest_from == NULL)
return 1;
if (digest_from->init != 1) {
SYSerr(SYS_F_IOCTL, EINVAL);
return 0;
}
if (!digest_init(to)) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
cphash.src_ses = digest_from->sess.ses;
cphash.dst_ses = digest_to->sess.ses;
if (ioctl(cfd, CIOCCPHASH, &cphash) < 0) {
SYSerr(SYS_F_IOCTL, errno);
return 0;
}
return 1;
}
static int digest_cleanup(EVP_MD_CTX *ctx)
{
return 1;
}
/*
* Keep a table of known nids and associated methods.
* Note that known_digest_nids[] isn't necessarily indexed the same way as
* digest_data[] above, which known_digest_methods[] is.
*/
static int known_digest_nids[OSSL_NELEM(digest_data)];
static int known_digest_nids_amount = -1; /* -1 indicates not yet initialised */
static EVP_MD *known_digest_methods[OSSL_NELEM(digest_data)] = { NULL, };
static void prepare_digest_methods(void)
{
size_t i;
struct session_op sess;
memset(&sess, 0, sizeof(sess));
for (i = 0, known_digest_nids_amount = 0; i < OSSL_NELEM(digest_data);
i++) {
/*
* Check that the algo is really availably by trying to open and close
* a session.
*/
sess.mac = digest_data[i].devcryptoid;
if (ioctl(cfd, CIOCGSESSION, &sess) < 0
|| ioctl(cfd, CIOCFSESSION, &sess.ses) < 0)
continue;
if ((known_digest_methods[i] = EVP_MD_meth_new(digest_data[i].nid,
NID_undef)) == NULL
|| !EVP_MD_meth_set_result_size(known_digest_methods[i],
digest_data[i].digestlen)
|| !EVP_MD_meth_set_init(known_digest_methods[i], digest_init)
|| !EVP_MD_meth_set_update(known_digest_methods[i], digest_update)
|| !EVP_MD_meth_set_final(known_digest_methods[i], digest_final)
|| !EVP_MD_meth_set_copy(known_digest_methods[i], digest_copy)
|| !EVP_MD_meth_set_cleanup(known_digest_methods[i], digest_cleanup)
|| !EVP_MD_meth_set_app_datasize(known_digest_methods[i],
sizeof(struct digest_ctx))) {
EVP_MD_meth_free(known_digest_methods[i]);
known_digest_methods[i] = NULL;
} else {
known_digest_nids[known_digest_nids_amount++] = digest_data[i].nid;
}
}
}
static const EVP_MD *get_digest_method(int nid)
{
size_t i = get_digest_data_index(nid);
if (i == (size_t)-1)
return NULL;
return known_digest_methods[i];
}
static int get_digest_nids(const int **nids)
{
*nids = known_digest_nids;
return known_digest_nids_amount;
}
static void destroy_digest_method(int nid)
{
size_t i = get_digest_data_index(nid);
EVP_MD_meth_free(known_digest_methods[i]);
known_digest_methods[i] = NULL;
}
static void destroy_all_digest_methods(void)
{
size_t i;
for (i = 0; i < OSSL_NELEM(digest_data); i++)
destroy_digest_method(digest_data[i].nid);
}
static int devcrypto_digests(ENGINE *e, const EVP_MD **digest,
const int **nids, int nid)
{
if (digest == NULL)
return get_digest_nids(nids);
*digest = get_digest_method(nid);
return *digest != NULL;
}
#endif
/******************************************************************************
*
* LOAD / UNLOAD
*
*****/
static int devcrypto_unload(ENGINE *e)
{
destroy_all_cipher_methods();
#ifdef IMPLEMENT_DIGEST
destroy_all_digest_methods();
#endif
close(cfd);
return 1;
}
/*
* This engine is always built into libcrypto, so it doesn't offer any
* ability to be dynamically loadable.
*/
void engine_load_devcrypto_int()
{
ENGINE *e = NULL;
if ((cfd = open("/dev/crypto", O_RDWR, 0)) < 0) {
fprintf(stderr, "Could not open /dev/crypto: %s\n", strerror(errno));
return;
}
if ((e = ENGINE_new()) == NULL
|| !ENGINE_set_destroy_function(e, devcrypto_unload)) {
ENGINE_free(e);
/*
* We know that devcrypto_unload() won't be called when one of the
* above two calls have failed, so we close cfd explicitly here to
* avoid leaking resources.
*/
close(cfd);
return;
}
prepare_cipher_methods();
#ifdef IMPLEMENT_DIGEST
prepare_digest_methods();
#endif
if (!ENGINE_set_id(e, "devcrypto")
|| !ENGINE_set_name(e, "/dev/crypto engine")
/*
* Asymmetric ciphers aren't well supported with /dev/crypto. Among the BSD
* implementations, it seems to only exist in FreeBSD, and regarding the
* parameters in its crypt_kop, the manual crypto(4) has this to say:
*
* The semantics of these arguments are currently undocumented.
*
* Reading through the FreeBSD source code doesn't give much more than
* their CRK_MOD_EXP implementation for ubsec.
*
* It doesn't look much better with cryptodev-linux. They have the crypt_kop
* structure as well as the command (CRK_*) in cryptodev.h, but no support
* seems to be implemented at all for the moment.
*
* At the time of writing, it seems impossible to write proper support for
* FreeBSD's asym features without some very deep knowledge and access to
* specific kernel modules.
*
* /Richard Levitte, 2017-05-11
*/
#if 0
# ifndef OPENSSL_NO_RSA
|| !ENGINE_set_RSA(e, devcrypto_rsa)
# endif
# ifndef OPENSSL_NO_DSA
|| !ENGINE_set_DSA(e, devcrypto_dsa)
# endif
# ifndef OPENSSL_NO_DH
|| !ENGINE_set_DH(e, devcrypto_dh)
# endif
# ifndef OPENSSL_NO_EC
|| !ENGINE_set_EC(e, devcrypto_ec)
# endif
#endif
|| !ENGINE_set_ciphers(e, devcrypto_ciphers)
#ifdef IMPLEMENT_DIGEST
|| !ENGINE_set_digests(e, devcrypto_digests)
#endif
) {
ENGINE_free(e);
return;
}
ENGINE_add(e);
ENGINE_free(e); /* Loose our local reference */
ERR_clear_error();
}