Simplify and fix ec_GFp_simple_points_make_affine
(which didn't always handle value 0 correctly). Reviewed-by: emilia@openssl.org
This commit is contained in:
parent
e0fc7961c4
commit
0fe73d6c36
3 changed files with 138 additions and 120 deletions
5
CHANGES
5
CHANGES
|
@ -310,6 +310,11 @@
|
|||
|
||||
Changes between 1.0.1e and 1.0.2 [xx XXX xxxx]
|
||||
|
||||
*) Fix ec_GFp_simple_points_make_affine (thus, EC_POINTs_mul etc.)
|
||||
for corner cases. (Certain input points at infinity could lead to
|
||||
bogus results, with non-infinity inputs mapped to infinity too.)
|
||||
[Bodo Moeller]
|
||||
|
||||
*) Initial support for PowerISA 2.0.7, first implemented in POWER8.
|
||||
This covers AES, SHA256/512 and GHASH. "Initial" means that most
|
||||
common cases are optimized and there still is room for further
|
||||
|
|
|
@ -1175,9 +1175,8 @@ int ec_GFp_simple_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ct
|
|||
int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT *points[], BN_CTX *ctx)
|
||||
{
|
||||
BN_CTX *new_ctx = NULL;
|
||||
BIGNUM *tmp0, *tmp1;
|
||||
size_t pow2 = 0;
|
||||
BIGNUM **heap = NULL;
|
||||
BIGNUM *tmp, *tmp_Z;
|
||||
BIGNUM **prod_Z = NULL;
|
||||
size_t i;
|
||||
int ret = 0;
|
||||
|
||||
|
@ -1192,124 +1191,104 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT
|
|||
}
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
tmp0 = BN_CTX_get(ctx);
|
||||
tmp1 = BN_CTX_get(ctx);
|
||||
if (tmp0 == NULL || tmp1 == NULL) goto err;
|
||||
tmp = BN_CTX_get(ctx);
|
||||
tmp_Z = BN_CTX_get(ctx);
|
||||
if (tmp == NULL || tmp_Z == NULL) goto err;
|
||||
|
||||
/* Before converting the individual points, compute inverses of all Z values.
|
||||
* Modular inversion is rather slow, but luckily we can do with a single
|
||||
* explicit inversion, plus about 3 multiplications per input value.
|
||||
*/
|
||||
|
||||
pow2 = 1;
|
||||
while (num > pow2)
|
||||
pow2 <<= 1;
|
||||
/* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
|
||||
* We need twice that. */
|
||||
pow2 <<= 1;
|
||||
|
||||
heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
|
||||
if (heap == NULL) goto err;
|
||||
|
||||
/* The array is used as a binary tree, exactly as in heapsort:
|
||||
*
|
||||
* heap[1]
|
||||
* heap[2] heap[3]
|
||||
* heap[4] heap[5] heap[6] heap[7]
|
||||
* heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
|
||||
*
|
||||
* We put the Z's in the last line;
|
||||
* then we set each other node to the product of its two child-nodes (where
|
||||
* empty or 0 entries are treated as ones);
|
||||
* then we invert heap[1];
|
||||
* then we invert each other node by replacing it by the product of its
|
||||
* parent (after inversion) and its sibling (before inversion).
|
||||
*/
|
||||
heap[0] = NULL;
|
||||
for (i = pow2/2 - 1; i > 0; i--)
|
||||
heap[i] = NULL;
|
||||
prod_Z = OPENSSL_malloc(num * sizeof prod_Z[0]);
|
||||
if (prod_Z == NULL) goto err;
|
||||
for (i = 0; i < num; i++)
|
||||
heap[pow2/2 + i] = &points[i]->Z;
|
||||
for (i = pow2/2 + num; i < pow2; i++)
|
||||
heap[i] = NULL;
|
||||
|
||||
/* set each node to the product of its children */
|
||||
for (i = pow2/2 - 1; i > 0; i--)
|
||||
{
|
||||
heap[i] = BN_new();
|
||||
if (heap[i] == NULL) goto err;
|
||||
|
||||
if (heap[2*i] != NULL)
|
||||
{
|
||||
if ((heap[2*i + 1] == NULL) || BN_is_zero(heap[2*i + 1]))
|
||||
{
|
||||
if (!BN_copy(heap[i], heap[2*i])) goto err;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (BN_is_zero(heap[2*i]))
|
||||
{
|
||||
if (!BN_copy(heap[i], heap[2*i + 1])) goto err;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!group->meth->field_mul(group, heap[i],
|
||||
heap[2*i], heap[2*i + 1], ctx)) goto err;
|
||||
}
|
||||
}
|
||||
}
|
||||
prod_Z[i] = BN_new();
|
||||
if (prod_Z[i] == NULL) goto err;
|
||||
}
|
||||
|
||||
/* invert heap[1] */
|
||||
if (!BN_is_zero(heap[1]))
|
||||
{
|
||||
if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx))
|
||||
{
|
||||
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
}
|
||||
if (group->meth->field_encode != 0)
|
||||
{
|
||||
/* in the Montgomery case, we just turned R*H (representing H)
|
||||
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
|
||||
* i.e. we have need to multiply by the Montgomery factor twice */
|
||||
if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
|
||||
if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) goto err;
|
||||
}
|
||||
/* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
|
||||
* skipping any zero-valued inputs (pretend that they're 1). */
|
||||
|
||||
/* set other heap[i]'s to their inverses */
|
||||
for (i = 2; i < pow2/2 + num; i += 2)
|
||||
if (!BN_is_zero(&points[0]->Z))
|
||||
{
|
||||
/* i is even */
|
||||
if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1]))
|
||||
if (!BN_copy(prod_Z[0], &points[0]->Z)) goto err;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (group->meth->field_set_to_one != 0)
|
||||
{
|
||||
if (!group->meth->field_mul(group, tmp0, heap[i/2], heap[i + 1], ctx)) goto err;
|
||||
if (!group->meth->field_mul(group, tmp1, heap[i/2], heap[i], ctx)) goto err;
|
||||
if (!BN_copy(heap[i], tmp0)) goto err;
|
||||
if (!BN_copy(heap[i + 1], tmp1)) goto err;
|
||||
if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) goto err;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!BN_copy(heap[i], heap[i/2])) goto err;
|
||||
if (!BN_one(prod_Z[0])) goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* we have replaced all non-zero Z's by their inverses, now fix up all the points */
|
||||
for (i = 1; i < num; i++)
|
||||
{
|
||||
if (!BN_is_zero(&points[i]->Z))
|
||||
{
|
||||
if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1], &points[i]->Z, ctx)) goto err;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!BN_copy(prod_Z[i], prod_Z[i - 1])) goto err;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now use a single explicit inversion to replace every
|
||||
* non-zero points[i]->Z by its inverse. */
|
||||
|
||||
if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx))
|
||||
{
|
||||
ECerr(EC_F_EC_GFP_SIMPLE_POINTS_MAKE_AFFINE, ERR_R_BN_LIB);
|
||||
goto err;
|
||||
}
|
||||
if (group->meth->field_encode != 0)
|
||||
{
|
||||
/* In the Montgomery case, we just turned R*H (representing H)
|
||||
* into 1/(R*H), but we need R*(1/H) (representing 1/H);
|
||||
* i.e. we need to multiply by the Montgomery factor twice. */
|
||||
if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err;
|
||||
if (!group->meth->field_encode(group, tmp, tmp, ctx)) goto err;
|
||||
}
|
||||
|
||||
for (i = num - 1; i > 0; --i)
|
||||
{
|
||||
/* Loop invariant: tmp is the product of the inverses of
|
||||
* points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
|
||||
if (!BN_is_zero(&points[i]->Z))
|
||||
{
|
||||
/* Set tmp_Z to the inverse of points[i]->Z (as product
|
||||
* of Z inverses 0 .. i, Z values 0 .. i - 1). */
|
||||
if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx)) goto err;
|
||||
/* Update tmp to satisfy the loop invariant for i - 1. */
|
||||
if (!group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx)) goto err;
|
||||
/* Replace points[i]->Z by its inverse. */
|
||||
if (!BN_copy(&points[i]->Z, tmp_Z)) goto err;
|
||||
}
|
||||
}
|
||||
|
||||
if (!BN_is_zero(&points[0]->Z))
|
||||
{
|
||||
/* Replace points[0]->Z by its inverse. */
|
||||
if (!BN_copy(&points[0]->Z, tmp)) goto err;
|
||||
}
|
||||
|
||||
/* Finally, fix up the X and Y coordinates for all points. */
|
||||
|
||||
for (i = 0; i < num; i++)
|
||||
{
|
||||
EC_POINT *p = points[i];
|
||||
|
||||
|
||||
if (!BN_is_zero(&p->Z))
|
||||
{
|
||||
/* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1) */
|
||||
|
||||
if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx)) goto err;
|
||||
if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx)) goto err;
|
||||
if (!group->meth->field_sqr(group, tmp, &p->Z, ctx)) goto err;
|
||||
if (!group->meth->field_mul(group, &p->X, &p->X, tmp, ctx)) goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, tmp, tmp, &p->Z, ctx)) goto err;
|
||||
if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) goto err;
|
||||
|
||||
if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx)) goto err;
|
||||
if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx)) goto err;
|
||||
|
||||
if (group->meth->field_set_to_one != 0)
|
||||
{
|
||||
if (!group->meth->field_set_to_one(group, &p->Z, ctx)) goto err;
|
||||
|
@ -1323,20 +1302,19 @@ int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num, EC_POINT
|
|||
}
|
||||
|
||||
ret = 1;
|
||||
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
if (new_ctx != NULL)
|
||||
BN_CTX_free(new_ctx);
|
||||
if (heap != NULL)
|
||||
if (prod_Z != NULL)
|
||||
{
|
||||
/* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
|
||||
for (i = pow2/2 - 1; i > 0; i--)
|
||||
for (i = 0; i < num; i++)
|
||||
{
|
||||
if (heap[i] != NULL)
|
||||
BN_clear_free(heap[i]);
|
||||
if (prod_Z[i] != NULL)
|
||||
BN_clear_free(prod_Z[i]);
|
||||
}
|
||||
OPENSSL_free(heap);
|
||||
OPENSSL_free(prod_Z);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
|
|
@ -199,6 +199,7 @@ static void group_order_tests(EC_GROUP *group)
|
|||
EC_POINT *P = EC_POINT_new(group);
|
||||
EC_POINT *Q = EC_POINT_new(group);
|
||||
BN_CTX *ctx = BN_CTX_new();
|
||||
int i;
|
||||
|
||||
n1 = BN_new(); n2 = BN_new(); order = BN_new();
|
||||
fprintf(stdout, "verify group order ...");
|
||||
|
@ -212,21 +213,55 @@ static void group_order_tests(EC_GROUP *group)
|
|||
if (!EC_POINT_mul(group, Q, order, NULL, NULL, ctx)) ABORT;
|
||||
if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
|
||||
fprintf(stdout, " ok\n");
|
||||
fprintf(stdout, "long/negative scalar tests ... ");
|
||||
if (!BN_one(n1)) ABORT;
|
||||
/* n1 = 1 - order */
|
||||
if (!BN_sub(n1, n1, order)) ABORT;
|
||||
if(!EC_POINT_mul(group, Q, NULL, P, n1, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
|
||||
/* n2 = 1 + order */
|
||||
if (!BN_add(n2, order, BN_value_one())) ABORT;
|
||||
if(!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
|
||||
/* n2 = (1 - order) * (1 + order) */
|
||||
if (!BN_mul(n2, n1, n2, ctx)) ABORT;
|
||||
if(!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
|
||||
fprintf(stdout, "long/negative scalar tests ");
|
||||
for (i = 1; i <= 2; i++)
|
||||
{
|
||||
const BIGNUM *scalars[6];
|
||||
const EC_POINT *points[6];
|
||||
|
||||
fprintf(stdout, i == 1 ?
|
||||
"allowing precomputation ... " :
|
||||
"without precomputation ... ");
|
||||
if (!BN_set_word(n1, i)) ABORT;
|
||||
/* If i == 1, P will be the predefined generator for which
|
||||
* EC_GROUP_precompute_mult has set up precomputation. */
|
||||
if (!EC_POINT_mul(group, P, n1, NULL, NULL, ctx)) ABORT;
|
||||
|
||||
if (!BN_one(n1)) ABORT;
|
||||
/* n1 = 1 - order */
|
||||
if (!BN_sub(n1, n1, order)) ABORT;
|
||||
if (!EC_POINT_mul(group, Q, NULL, P, n1, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
|
||||
|
||||
/* n2 = 1 + order */
|
||||
if (!BN_add(n2, order, BN_value_one())) ABORT;
|
||||
if (!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
|
||||
|
||||
/* n2 = (1 - order) * (1 + order) = 1 - order^2 */
|
||||
if (!BN_mul(n2, n1, n2, ctx)) ABORT;
|
||||
if (!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
|
||||
if (0 != EC_POINT_cmp(group, Q, P, ctx)) ABORT;
|
||||
|
||||
/* n2 = order^2 - 1 */
|
||||
BN_set_negative(n2, 0);
|
||||
if (!EC_POINT_mul(group, Q, NULL, P, n2, ctx)) ABORT;
|
||||
/* Add P to verify the result. */
|
||||
if (!EC_POINT_add(group, Q, Q, P, ctx)) ABORT;
|
||||
if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
|
||||
|
||||
/* Exercise EC_POINTs_mul, including corner cases. */
|
||||
scalars[0] = n1; points[0] = Q; /* => infinity */
|
||||
scalars[1] = n2; points[1] = P; /* => -P */
|
||||
scalars[2] = n1; points[2] = Q; /* => infinity */
|
||||
scalars[3] = n2; points[3] = Q; /* => infinity */
|
||||
scalars[4] = n1; points[4] = P; /* => P */
|
||||
scalars[5] = n2; points[5] = Q; /* => infinity */
|
||||
if (!EC_POINTs_mul(group, Q, NULL, 5, points, scalars, ctx)) ABORT;
|
||||
if (!EC_POINT_is_at_infinity(group, Q)) ABORT;
|
||||
}
|
||||
fprintf(stdout, "ok\n");
|
||||
|
||||
EC_POINT_free(P);
|
||||
EC_POINT_free(Q);
|
||||
BN_free(n1);
|
||||
|
|
Loading…
Reference in a new issue