Add Broadwell performance results.

Reviewed-by: Emilia Käsper <emilia@openssl.org>
(cherry picked from commit b3d7294976)
This commit is contained in:
Andy Polyakov 2015-01-05 23:40:10 +01:00
parent 36f694e09a
commit 10771e3421
3 changed files with 11 additions and 2 deletions

View file

@ -61,8 +61,12 @@
#
# rsa2048 sign/sec OpenSSL 1.0.1 scalar(*) this
# 2.3GHz Haswell 621 765/+23% 1113/+79%
# 2.3GHz Broadwell(**) 688 1200(***)/+74% 1120/+63%
#
# (*) if system doesn't support AVX2, for reference purposes;
# (**) scaled to 2.3GHz to simplify comparison;
# (***) scalar AD*X code is faster than AVX2 and is preferred code
# path for Broadwell;
$flavour = shift;
$output = shift;

View file

@ -22,7 +22,10 @@
# [1] and [2], with MOVBE twist suggested by Ilya Albrekht and Max
# Locktyukhin of Intel Corp. who verified that it reduces shuffles
# pressure with notable relative improvement, achieving 1.0 cycle per
# byte processed with 128-bit key on Haswell processor.
# byte processed with 128-bit key on Haswell processor, and 0.74 -
# on Broadwell. [Mentioned results are raw profiled measurements for
# favourable packet size, one divisible by 96. Applications using the
# EVP interface will observe a few percent worse performance.]
#
# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
# [2] http://www.intel.com/content/dam/www/public/us/en/documents/software-support/enabling-high-performance-gcm.pdf

View file

@ -63,6 +63,7 @@
# Sandy Bridge 1.80(+8%)
# Ivy Bridge 1.80(+7%)
# Haswell 0.55(+93%) (if system doesn't support AVX)
# Broadwell 0.45(+110%)(if system doesn't support AVX)
# Bulldozer 1.49(+27%)
# Silvermont 2.88(+13%)
@ -73,7 +74,8 @@
# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
# sub-optimally in comparison to above mentioned version. But thanks
# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
# it performs in 0.41 cycles per byte on Haswell processor.
# it performs in 0.41 cycles per byte on Haswell processor, and in
# 0.29 on Broadwell.
#
# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest