Corrections to the comments in BN_mod_inverse.

This commit is contained in:
Bodo Möller 2000-11-30 12:53:53 +00:00
parent 4751717cd8
commit 19cda70045

View file

@ -240,7 +240,7 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
/* From B = a mod |n|, A = |n| it follows that
*
* 0 <= B < A,
* X*a == B (mod |n|),
* sign*X*a == B (mod |n|),
* -sign*Y*a == A (mod |n|).
*/
@ -250,7 +250,7 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
/*
* 0 < B < A,
* (*) X*a == B (mod |n|),
* (*) sign*X*a == B (mod |n|),
* -sign*Y*a == A (mod |n|)
*/
@ -314,15 +314,15 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
* i.e.
* -sign*Y*a - D*A == B (mod |n|).
* Similarly, (*) translates into
* X*a == A (mod |n|).
* sign*X*a == A (mod |n|).
*
* Thus,
* -sign*Y*a - D*X*a == B (mod |n|),
* -sign*Y*a - D*sign*X*a == B (mod |n|),
* i.e.
* -sign*(Y + D*X)*a == B (mod |n|).
* -sign*(Y + D*X)*a == B (mod |n|).
*
* So if we set (X, Y, sign) := (Y + D*X, X, -sign), we arrive back at
* X*a == B (mod |n|),
* sign*X*a == B (mod |n|),
* -sign*Y*a == A (mod |n|).
* Note that X and Y stay non-negative all the time.
*/
@ -361,7 +361,7 @@ BIGNUM *BN_mod_inverse(BIGNUM *in,
}
/*
* The while loop ends when
* The while loop (Euclid's algorithm) ends when
* A == gcd(a,n);
* we have
* -sign*Y*a == A (mod |n|),