Fix potential SCA vulnerability in some EC_METHODs
This commit addresses a potential side-channel vulnerability in the internals of some elliptic curve low level operations. The side-channel leakage appears to be tiny, so the severity of this issue is rather low. The issue was reported by David Schrammel and Samuel Weiser. Reviewed-by: Matt Caswell <matt@openssl.org> Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> (Merged from https://github.com/openssl/openssl/pull/9239) (cherry picked from commit 3cb914c463ed1c9e32cfb773d816139a61b6ad5f)
This commit is contained in:
parent
2c52a36400
commit
1f60c1c788
3 changed files with 71 additions and 6 deletions
|
@ -907,6 +907,7 @@ static void point_add(felem x3, felem y3, felem z3,
|
|||
felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
|
||||
widefelem tmp, tmp2;
|
||||
limb z1_is_zero, z2_is_zero, x_equal, y_equal;
|
||||
limb points_equal;
|
||||
|
||||
if (!mixed) {
|
||||
/* ftmp2 = z2^2 */
|
||||
|
@ -963,15 +964,41 @@ static void point_add(felem x3, felem y3, felem z3,
|
|||
felem_reduce(ftmp, tmp);
|
||||
|
||||
/*
|
||||
* the formulae are incorrect if the points are equal so we check for
|
||||
* this and do doubling if this happens
|
||||
* The formulae are incorrect if the points are equal, in affine coordinates
|
||||
* (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
|
||||
* happens.
|
||||
*
|
||||
* We use bitwise operations to avoid potential side-channels introduced by
|
||||
* the short-circuiting behaviour of boolean operators.
|
||||
*/
|
||||
x_equal = felem_is_zero(ftmp);
|
||||
y_equal = felem_is_zero(ftmp3);
|
||||
/*
|
||||
* The special case of either point being the point at infinity (z1 and/or
|
||||
* z2 are zero), is handled separately later on in this function, so we
|
||||
* avoid jumping to point_double here in those special cases.
|
||||
*/
|
||||
z1_is_zero = felem_is_zero(z1);
|
||||
z2_is_zero = felem_is_zero(z2);
|
||||
/* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
|
||||
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
|
||||
|
||||
/*
|
||||
* Compared to `ecp_nistp256.c` and `ecp_nistp521.c`, in this
|
||||
* specific implementation `felem_is_zero()` returns truth as `0x1`
|
||||
* (rather than `0xff..ff`).
|
||||
*
|
||||
* This implies that `~true` in this implementation becomes
|
||||
* `0xff..fe` (rather than `0x0`): for this reason, to be used in
|
||||
* the if expression, we mask out only the last bit in the next
|
||||
* line.
|
||||
*/
|
||||
points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)) & 1;
|
||||
|
||||
if (points_equal) {
|
||||
/*
|
||||
* This is obviously not constant-time but, as mentioned before, this
|
||||
* case never happens during single point multiplication, so there is no
|
||||
* timing leak for ECDH or ECDSA signing.
|
||||
*/
|
||||
point_double(x3, y3, z3, x1, y1, z1);
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -1241,6 +1241,7 @@ static void point_add(felem x3, felem y3, felem z3,
|
|||
longfelem tmp, tmp2;
|
||||
smallfelem small1, small2, small3, small4, small5;
|
||||
limb x_equal, y_equal, z1_is_zero, z2_is_zero;
|
||||
limb points_equal;
|
||||
|
||||
felem_shrink(small3, z1);
|
||||
|
||||
|
@ -1340,7 +1341,26 @@ static void point_add(felem x3, felem y3, felem z3,
|
|||
felem_shrink(small1, ftmp5);
|
||||
y_equal = smallfelem_is_zero(small1);
|
||||
|
||||
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
|
||||
/*
|
||||
* The formulae are incorrect if the points are equal, in affine coordinates
|
||||
* (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
|
||||
* happens.
|
||||
*
|
||||
* We use bitwise operations to avoid potential side-channels introduced by
|
||||
* the short-circuiting behaviour of boolean operators.
|
||||
*
|
||||
* The special case of either point being the point at infinity (z1 and/or
|
||||
* z2 are zero), is handled separately later on in this function, so we
|
||||
* avoid jumping to point_double here in those special cases.
|
||||
*/
|
||||
points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
|
||||
|
||||
if (points_equal) {
|
||||
/*
|
||||
* This is obviously not constant-time but, as mentioned before, this
|
||||
* case never happens during single point multiplication, so there is no
|
||||
* timing leak for ECDH or ECDSA signing.
|
||||
*/
|
||||
point_double(x3, y3, z3, x1, y1, z1);
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -1158,6 +1158,7 @@ static void point_add(felem x3, felem y3, felem z3,
|
|||
felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
|
||||
largefelem tmp, tmp2;
|
||||
limb x_equal, y_equal, z1_is_zero, z2_is_zero;
|
||||
limb points_equal;
|
||||
|
||||
z1_is_zero = felem_is_zero(z1);
|
||||
z2_is_zero = felem_is_zero(z2);
|
||||
|
@ -1242,7 +1243,24 @@ static void point_add(felem x3, felem y3, felem z3,
|
|||
felem_scalar64(ftmp5, 2);
|
||||
/* ftmp5[i] < 2^61 */
|
||||
|
||||
if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
|
||||
/*
|
||||
* The formulae are incorrect if the points are equal, in affine coordinates
|
||||
* (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
|
||||
* happens.
|
||||
*
|
||||
* We use bitwise operations to avoid potential side-channels introduced by
|
||||
* the short-circuiting behaviour of boolean operators.
|
||||
*
|
||||
* The special case of either point being the point at infinity (z1 and/or
|
||||
* z2 are zero), is handled separately later on in this function, so we
|
||||
* avoid jumping to point_double here in those special cases.
|
||||
*
|
||||
* Notice the comment below on the implications of this branching for timing
|
||||
* leaks and why it is considered practically irrelevant.
|
||||
*/
|
||||
points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
|
||||
|
||||
if (points_equal) {
|
||||
/*
|
||||
* This is obviously not constant-time but it will almost-never happen
|
||||
* for ECDH / ECDSA. The case where it can happen is during scalar-mult
|
||||
|
|
Loading…
Reference in a new issue