Remove dead code in bn
There are a number of symbols in bn which are internal only and never used by anything. They should be removed. Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/2766)
This commit is contained in:
parent
2722ff506d
commit
1fef2f8050
6 changed files with 1 additions and 493 deletions
|
@ -6,7 +6,7 @@ bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
|
|||
bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
|
||||
bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
|
||||
bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
|
||||
bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
|
||||
bn_mul_low_recursive, bn_sqr_normal, bn_sqr_recursive,
|
||||
bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
|
||||
bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low - BIGNUM
|
||||
library internal functions
|
||||
|
@ -41,8 +41,6 @@ library internal functions
|
|||
int n, int tna, int tnb, BN_ULONG *tmp);
|
||||
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
|
||||
int n2, BN_ULONG *tmp);
|
||||
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
|
||||
int n2, BN_ULONG *tmp);
|
||||
|
||||
void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
|
||||
void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
|
||||
|
@ -178,10 +176,6 @@ bn_mul_low_recursive(B<r>, B<a>, B<b>, B<n2>, B<tmp>) operates on the
|
|||
B<n2> word arrays B<r> and B<tmp> and the B<n2>/2 word arrays B<a>
|
||||
and B<b>.
|
||||
|
||||
bn_mul_high(B<r>, B<a>, B<b>, B<l>, B<n2>, B<tmp>) operates on the
|
||||
B<n2> word arrays B<r>, B<a>, B<b> and B<l> (?) and the 3*B<n2> word
|
||||
array B<tmp>.
|
||||
|
||||
BN_mul() calls bn_mul_normal(), or an optimized implementation if the
|
||||
factors have the same size: bn_mul_comba8() is used if they are 8
|
||||
words long, bn_mul_recursive() if they are larger than
|
||||
|
|
|
@ -143,11 +143,6 @@ int bn_get_top(const BIGNUM *a)
|
|||
return a->top;
|
||||
}
|
||||
|
||||
void bn_set_top(BIGNUM *a, int top)
|
||||
{
|
||||
a->top = top;
|
||||
}
|
||||
|
||||
int bn_get_dmax(const BIGNUM *a)
|
||||
{
|
||||
return a->dmax;
|
||||
|
@ -198,13 +193,3 @@ int bn_set_words(BIGNUM *a, BN_ULONG *words, int num_words)
|
|||
bn_correct_top(a);
|
||||
return 1;
|
||||
}
|
||||
|
||||
size_t bn_sizeof_BIGNUM(void)
|
||||
{
|
||||
return sizeof(BIGNUM);
|
||||
}
|
||||
|
||||
BIGNUM *bn_array_el(BIGNUM *base, int el)
|
||||
{
|
||||
return &base[el];
|
||||
}
|
||||
|
|
|
@ -645,10 +645,6 @@ void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t);
|
|||
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
|
||||
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
||||
BN_ULONG *t);
|
||||
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
|
||||
BN_ULONG *t);
|
||||
BN_ULONG bn_add_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
||||
int cl, int dl);
|
||||
BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
|
||||
int cl, int dl);
|
||||
int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
|
||||
|
@ -660,8 +656,6 @@ BIGNUM *int_bn_mod_inverse(BIGNUM *in,
|
|||
|
||||
int bn_probable_prime_dh(BIGNUM *rnd, int bits,
|
||||
const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx);
|
||||
int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx);
|
||||
int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx);
|
||||
|
||||
static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits)
|
||||
{
|
||||
|
|
|
@ -152,166 +152,6 @@ BN_ULONG bn_sub_part_words(BN_ULONG *r,
|
|||
}
|
||||
#endif
|
||||
|
||||
BN_ULONG bn_add_part_words(BN_ULONG *r,
|
||||
const BN_ULONG *a, const BN_ULONG *b,
|
||||
int cl, int dl)
|
||||
{
|
||||
BN_ULONG c, l, t;
|
||||
|
||||
assert(cl >= 0);
|
||||
c = bn_add_words(r, a, b, cl);
|
||||
|
||||
if (dl == 0)
|
||||
return c;
|
||||
|
||||
r += cl;
|
||||
a += cl;
|
||||
b += cl;
|
||||
|
||||
if (dl < 0) {
|
||||
int save_dl = dl;
|
||||
while (c) {
|
||||
l = (c + b[0]) & BN_MASK2;
|
||||
c = (l < c);
|
||||
r[0] = l;
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
|
||||
l = (c + b[1]) & BN_MASK2;
|
||||
c = (l < c);
|
||||
r[1] = l;
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
|
||||
l = (c + b[2]) & BN_MASK2;
|
||||
c = (l < c);
|
||||
r[2] = l;
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
|
||||
l = (c + b[3]) & BN_MASK2;
|
||||
c = (l < c);
|
||||
r[3] = l;
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
|
||||
save_dl = dl;
|
||||
b += 4;
|
||||
r += 4;
|
||||
}
|
||||
if (dl < 0) {
|
||||
if (save_dl < dl) {
|
||||
switch (dl - save_dl) {
|
||||
case 1:
|
||||
r[1] = b[1];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
case 2:
|
||||
r[2] = b[2];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
case 3:
|
||||
r[3] = b[3];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
}
|
||||
b += 4;
|
||||
r += 4;
|
||||
}
|
||||
}
|
||||
if (dl < 0) {
|
||||
for (;;) {
|
||||
r[0] = b[0];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
r[1] = b[1];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
r[2] = b[2];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
r[3] = b[3];
|
||||
if (++dl >= 0)
|
||||
break;
|
||||
|
||||
b += 4;
|
||||
r += 4;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
int save_dl = dl;
|
||||
while (c) {
|
||||
t = (a[0] + c) & BN_MASK2;
|
||||
c = (t < c);
|
||||
r[0] = t;
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
|
||||
t = (a[1] + c) & BN_MASK2;
|
||||
c = (t < c);
|
||||
r[1] = t;
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
|
||||
t = (a[2] + c) & BN_MASK2;
|
||||
c = (t < c);
|
||||
r[2] = t;
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
|
||||
t = (a[3] + c) & BN_MASK2;
|
||||
c = (t < c);
|
||||
r[3] = t;
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
|
||||
save_dl = dl;
|
||||
a += 4;
|
||||
r += 4;
|
||||
}
|
||||
if (dl > 0) {
|
||||
if (save_dl > dl) {
|
||||
switch (save_dl - dl) {
|
||||
case 1:
|
||||
r[1] = a[1];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
case 2:
|
||||
r[2] = a[2];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
case 3:
|
||||
r[3] = a[3];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
}
|
||||
a += 4;
|
||||
r += 4;
|
||||
}
|
||||
}
|
||||
if (dl > 0) {
|
||||
for (;;) {
|
||||
r[0] = a[0];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
r[1] = a[1];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
r[2] = a[2];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
r[3] = a[3];
|
||||
if (--dl <= 0)
|
||||
break;
|
||||
|
||||
a += 4;
|
||||
r += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
#ifdef BN_RECURSION
|
||||
/*
|
||||
* Karatsuba recursive multiplication algorithm (cf. Knuth, The Art of
|
||||
|
@ -653,176 +493,6 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
|
|||
bn_add_words(&(r[n]), &(r[n]), &(t[n]), n);
|
||||
}
|
||||
}
|
||||
|
||||
/*-
|
||||
* a and b must be the same size, which is n2.
|
||||
* r needs to be n2 words and t needs to be n2*2
|
||||
* l is the low words of the output.
|
||||
* t needs to be n2*3
|
||||
*/
|
||||
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
|
||||
BN_ULONG *t)
|
||||
{
|
||||
int i, n;
|
||||
int c1, c2;
|
||||
int neg, oneg, zero;
|
||||
BN_ULONG ll, lc, *lp, *mp;
|
||||
|
||||
n = n2 / 2;
|
||||
|
||||
/* Calculate (al-ah)*(bh-bl) */
|
||||
neg = zero = 0;
|
||||
c1 = bn_cmp_words(&(a[0]), &(a[n]), n);
|
||||
c2 = bn_cmp_words(&(b[n]), &(b[0]), n);
|
||||
switch (c1 * 3 + c2) {
|
||||
case -4:
|
||||
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
|
||||
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
|
||||
break;
|
||||
case -3:
|
||||
zero = 1;
|
||||
break;
|
||||
case -2:
|
||||
bn_sub_words(&(r[0]), &(a[n]), &(a[0]), n);
|
||||
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
|
||||
neg = 1;
|
||||
break;
|
||||
case -1:
|
||||
case 0:
|
||||
case 1:
|
||||
zero = 1;
|
||||
break;
|
||||
case 2:
|
||||
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
|
||||
bn_sub_words(&(r[n]), &(b[0]), &(b[n]), n);
|
||||
neg = 1;
|
||||
break;
|
||||
case 3:
|
||||
zero = 1;
|
||||
break;
|
||||
case 4:
|
||||
bn_sub_words(&(r[0]), &(a[0]), &(a[n]), n);
|
||||
bn_sub_words(&(r[n]), &(b[n]), &(b[0]), n);
|
||||
break;
|
||||
}
|
||||
|
||||
oneg = neg;
|
||||
/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
|
||||
/* r[10] = (a[1]*b[1]) */
|
||||
# ifdef BN_MUL_COMBA
|
||||
if (n == 8) {
|
||||
bn_mul_comba8(&(t[0]), &(r[0]), &(r[n]));
|
||||
bn_mul_comba8(r, &(a[n]), &(b[n]));
|
||||
} else
|
||||
# endif
|
||||
{
|
||||
bn_mul_recursive(&(t[0]), &(r[0]), &(r[n]), n, 0, 0, &(t[n2]));
|
||||
bn_mul_recursive(r, &(a[n]), &(b[n]), n, 0, 0, &(t[n2]));
|
||||
}
|
||||
|
||||
/*-
|
||||
* s0 == low(al*bl)
|
||||
* s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
|
||||
* We know s0 and s1 so the only unknown is high(al*bl)
|
||||
* high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
|
||||
* high(al*bl) == s1 - (r[0]+l[0]+t[0])
|
||||
*/
|
||||
if (l != NULL) {
|
||||
lp = &(t[n2 + n]);
|
||||
bn_add_words(lp, &(r[0]), &(l[0]), n);
|
||||
} else {
|
||||
lp = &(r[0]);
|
||||
}
|
||||
|
||||
if (neg)
|
||||
neg = (int)(bn_sub_words(&(t[n2]), lp, &(t[0]), n));
|
||||
else {
|
||||
bn_add_words(&(t[n2]), lp, &(t[0]), n);
|
||||
neg = 0;
|
||||
}
|
||||
|
||||
if (l != NULL) {
|
||||
bn_sub_words(&(t[n2 + n]), &(l[n]), &(t[n2]), n);
|
||||
} else {
|
||||
lp = &(t[n2 + n]);
|
||||
mp = &(t[n2]);
|
||||
for (i = 0; i < n; i++)
|
||||
lp[i] = ((~mp[i]) + 1) & BN_MASK2;
|
||||
}
|
||||
|
||||
/*-
|
||||
* s[0] = low(al*bl)
|
||||
* t[3] = high(al*bl)
|
||||
* t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
|
||||
* r[10] = (a[1]*b[1])
|
||||
*/
|
||||
/*-
|
||||
* R[10] = al*bl
|
||||
* R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
|
||||
* R[32] = ah*bh
|
||||
*/
|
||||
/*-
|
||||
* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
|
||||
* R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
|
||||
* R[3]=r[1]+(carry/borrow)
|
||||
*/
|
||||
if (l != NULL) {
|
||||
lp = &(t[n2]);
|
||||
c1 = (int)(bn_add_words(lp, &(t[n2 + n]), &(l[0]), n));
|
||||
} else {
|
||||
lp = &(t[n2 + n]);
|
||||
c1 = 0;
|
||||
}
|
||||
c1 += (int)(bn_add_words(&(t[n2]), lp, &(r[0]), n));
|
||||
if (oneg)
|
||||
c1 -= (int)(bn_sub_words(&(t[n2]), &(t[n2]), &(t[0]), n));
|
||||
else
|
||||
c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), &(t[0]), n));
|
||||
|
||||
c2 = (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n2 + n]), n));
|
||||
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(r[n]), n));
|
||||
if (oneg)
|
||||
c2 -= (int)(bn_sub_words(&(r[0]), &(r[0]), &(t[n]), n));
|
||||
else
|
||||
c2 += (int)(bn_add_words(&(r[0]), &(r[0]), &(t[n]), n));
|
||||
|
||||
if (c1 != 0) { /* Add starting at r[0], could be +ve or -ve */
|
||||
i = 0;
|
||||
if (c1 > 0) {
|
||||
lc = c1;
|
||||
do {
|
||||
ll = (r[i] + lc) & BN_MASK2;
|
||||
r[i++] = ll;
|
||||
lc = (lc > ll);
|
||||
} while (lc);
|
||||
} else {
|
||||
lc = -c1;
|
||||
do {
|
||||
ll = r[i];
|
||||
r[i++] = (ll - lc) & BN_MASK2;
|
||||
lc = (lc > ll);
|
||||
} while (lc);
|
||||
}
|
||||
}
|
||||
if (c2 != 0) { /* Add starting at r[1] */
|
||||
i = n;
|
||||
if (c2 > 0) {
|
||||
lc = c2;
|
||||
do {
|
||||
ll = (r[i] + lc) & BN_MASK2;
|
||||
r[i++] = ll;
|
||||
lc = (lc > ll);
|
||||
} while (lc);
|
||||
} else {
|
||||
lc = -c2;
|
||||
do {
|
||||
ll = r[i];
|
||||
r[i++] = (ll - lc) & BN_MASK2;
|
||||
lc = (lc > ll);
|
||||
} while (lc);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif /* BN_RECURSION */
|
||||
|
||||
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
||||
|
|
|
@ -29,53 +29,6 @@ static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
|
|||
const BIGNUM *add, const BIGNUM *rem,
|
||||
BN_CTX *ctx);
|
||||
|
||||
static const int prime_offsets[480] = {
|
||||
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
|
||||
89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163,
|
||||
167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 221, 223, 227, 229,
|
||||
233, 239, 241, 247, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293,
|
||||
299, 307, 311, 313, 317, 323, 331, 337, 347, 349, 353, 359, 361, 367,
|
||||
373, 377, 379, 383, 389, 391, 397, 401, 403, 409, 419, 421, 431, 433,
|
||||
437, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 493, 499,
|
||||
503, 509, 521, 523, 527, 529, 533, 541, 547, 551, 557, 559, 563, 569,
|
||||
571, 577, 587, 589, 593, 599, 601, 607, 611, 613, 617, 619, 629, 631,
|
||||
641, 643, 647, 653, 659, 661, 667, 673, 677, 683, 689, 691, 697, 701,
|
||||
703, 709, 713, 719, 727, 731, 733, 739, 743, 751, 757, 761, 767, 769,
|
||||
773, 779, 787, 793, 797, 799, 809, 811, 817, 821, 823, 827, 829, 839,
|
||||
841, 851, 853, 857, 859, 863, 871, 877, 881, 883, 887, 893, 899, 901,
|
||||
907, 911, 919, 923, 929, 937, 941, 943, 947, 949, 953, 961, 967, 971,
|
||||
977, 983, 989, 991, 997, 1003, 1007, 1009, 1013, 1019, 1021, 1027, 1031,
|
||||
1033, 1037, 1039, 1049, 1051, 1061, 1063, 1069, 1073, 1079, 1081, 1087,
|
||||
1091, 1093, 1097, 1103, 1109, 1117, 1121, 1123, 1129, 1139, 1147, 1151,
|
||||
1153, 1157, 1159, 1163, 1171, 1181, 1187, 1189, 1193, 1201, 1207, 1213,
|
||||
1217, 1219, 1223, 1229, 1231, 1237, 1241, 1247, 1249, 1259, 1261, 1271,
|
||||
1273, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1313, 1319,
|
||||
1321, 1327, 1333, 1339, 1343, 1349, 1357, 1361, 1363, 1367, 1369, 1373,
|
||||
1381, 1387, 1391, 1399, 1403, 1409, 1411, 1417, 1423, 1427, 1429, 1433,
|
||||
1439, 1447, 1451, 1453, 1457, 1459, 1469, 1471, 1481, 1483, 1487, 1489,
|
||||
1493, 1499, 1501, 1511, 1513, 1517, 1523, 1531, 1537, 1541, 1543, 1549,
|
||||
1553, 1559, 1567, 1571, 1577, 1579, 1583, 1591, 1597, 1601, 1607, 1609,
|
||||
1613, 1619, 1621, 1627, 1633, 1637, 1643, 1649, 1651, 1657, 1663, 1667,
|
||||
1669, 1679, 1681, 1691, 1693, 1697, 1699, 1703, 1709, 1711, 1717, 1721,
|
||||
1723, 1733, 1739, 1741, 1747, 1751, 1753, 1759, 1763, 1769, 1777, 1781,
|
||||
1783, 1787, 1789, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1843,
|
||||
1847, 1849, 1853, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1891, 1901,
|
||||
1907, 1909, 1913, 1919, 1921, 1927, 1931, 1933, 1937, 1943, 1949, 1951,
|
||||
1957, 1961, 1963, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017,
|
||||
2021, 2027, 2029, 2033, 2039, 2041, 2047, 2053, 2059, 2063, 2069, 2071,
|
||||
2077, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2117, 2119, 2129, 2131,
|
||||
2137, 2141, 2143, 2147, 2153, 2159, 2161, 2171, 2173, 2179, 2183, 2197,
|
||||
2201, 2203, 2207, 2209, 2213, 2221, 2227, 2231, 2237, 2239, 2243, 2249,
|
||||
2251, 2257, 2263, 2267, 2269, 2273, 2279, 2281, 2287, 2291, 2293, 2297,
|
||||
2309, 2311
|
||||
};
|
||||
|
||||
static const int prime_offset_count = 480;
|
||||
static const int prime_multiplier = 2310;
|
||||
static const int prime_multiplier_bits = 11; /* 2^|prime_multiplier_bits| <=
|
||||
* |prime_multiplier| */
|
||||
static const int first_prime_index = 5;
|
||||
|
||||
int BN_GENCB_call(BN_GENCB *cb, int a, int b)
|
||||
{
|
||||
/* No callback means continue */
|
||||
|
@ -305,83 +258,6 @@ int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
|
|||
return (ret);
|
||||
}
|
||||
|
||||
int bn_probable_prime_dh_retry(BIGNUM *rnd, int bits, BN_CTX *ctx)
|
||||
{
|
||||
int i;
|
||||
int ret = 0;
|
||||
|
||||
loop:
|
||||
if (!BN_rand(rnd, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
|
||||
goto err;
|
||||
|
||||
/* we now have a random number 'rand' to test. */
|
||||
|
||||
for (i = 1; i < NUMPRIMES; i++) {
|
||||
/* check that rnd is a prime */
|
||||
BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
|
||||
if (mod == (BN_ULONG)-1)
|
||||
goto err;
|
||||
if (mod <= 1) {
|
||||
goto loop;
|
||||
}
|
||||
}
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
bn_check_top(rnd);
|
||||
return (ret);
|
||||
}
|
||||
|
||||
int bn_probable_prime_dh_coprime(BIGNUM *rnd, int bits, BN_CTX *ctx)
|
||||
{
|
||||
int i;
|
||||
BIGNUM *offset_index;
|
||||
BIGNUM *offset_count;
|
||||
int ret = 0;
|
||||
|
||||
OPENSSL_assert(bits > prime_multiplier_bits);
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
if ((offset_index = BN_CTX_get(ctx)) == NULL)
|
||||
goto err;
|
||||
if ((offset_count = BN_CTX_get(ctx)) == NULL)
|
||||
goto err;
|
||||
|
||||
if (!BN_add_word(offset_count, prime_offset_count))
|
||||
goto err;
|
||||
|
||||
loop:
|
||||
if (!BN_rand(rnd, bits - prime_multiplier_bits,
|
||||
BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD))
|
||||
goto err;
|
||||
if (BN_is_bit_set(rnd, bits))
|
||||
goto loop;
|
||||
if (!BN_rand_range(offset_index, offset_count))
|
||||
goto err;
|
||||
|
||||
if (!BN_mul_word(rnd, prime_multiplier)
|
||||
|| !BN_add_word(rnd, prime_offsets[BN_get_word(offset_index)]))
|
||||
goto err;
|
||||
|
||||
/* we now have a random number 'rand' to test. */
|
||||
|
||||
/* skip coprimes */
|
||||
for (i = first_prime_index; i < NUMPRIMES; i++) {
|
||||
/* check that rnd is a prime */
|
||||
BN_ULONG mod = BN_mod_word(rnd, (BN_ULONG)primes[i]);
|
||||
if (mod == (BN_ULONG)-1)
|
||||
goto err;
|
||||
if (mod <= 1)
|
||||
goto loop;
|
||||
}
|
||||
ret = 1;
|
||||
|
||||
err:
|
||||
BN_CTX_end(ctx);
|
||||
bn_check_top(rnd);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
|
||||
const BIGNUM *a1_odd, int k, BN_CTX *ctx,
|
||||
BN_MONT_CTX *mont)
|
||||
|
|
|
@ -34,8 +34,6 @@ signed char *bn_compute_wNAF(const BIGNUM *scalar, int w, size_t *ret_len);
|
|||
|
||||
int bn_get_top(const BIGNUM *a);
|
||||
|
||||
void bn_set_top(BIGNUM *a, int top);
|
||||
|
||||
int bn_get_dmax(const BIGNUM *a);
|
||||
|
||||
/* Set all words to zero */
|
||||
|
@ -66,15 +64,6 @@ void bn_set_static_words(BIGNUM *a, BN_ULONG *words, int size);
|
|||
*/
|
||||
int bn_set_words(BIGNUM *a, BN_ULONG *words, int num_words);
|
||||
|
||||
size_t bn_sizeof_BIGNUM(void);
|
||||
|
||||
/*
|
||||
* Return element el from an array of BIGNUMs starting at base (required
|
||||
* because callers do not know the size of BIGNUM at compilation time)
|
||||
*/
|
||||
BIGNUM *bn_array_el(BIGNUM *base, int el);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue