This commit was manufactured by cvs2svn to create branch
'OpenSSL_0_9_7-stable'.
This commit is contained in:
commit
24e85c3dee
2 changed files with 375 additions and 0 deletions
227
crypto/rc4/asm/rc4-amd64.pl
Executable file
227
crypto/rc4/asm/rc4-amd64.pl
Executable file
|
@ -0,0 +1,227 @@
|
|||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. Rights for redistribution and usage in source and binary
|
||||
# forms are granted according to the OpenSSL license.
|
||||
# ====================================================================
|
||||
#
|
||||
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
|
||||
# "hand-coded assembler"] doesn't stand for the whole improvement
|
||||
# coefficient. It turned out that eliminating RC4_CHAR from config
|
||||
# line results in ~40% improvement (yes, even for C implementation).
|
||||
# Presumably it has everything to do with AMD cache architecture and
|
||||
# RAW or whatever penalties. Once again! The module *requires* config
|
||||
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
|
||||
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
|
||||
# I simply 'inc %r8b'. Even though optimization manual discourages
|
||||
# to operate on partial registers, it turned out to be the best bet.
|
||||
# At least for AMD... How IA32E would perform remains to be seen...
|
||||
|
||||
# As was shown by Marc Bevand reordering of couple of load operations
|
||||
# results in even higher performance gain of 3.3x:-) At least on
|
||||
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
|
||||
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
|
||||
# Latter means that if you want to *estimate* what to expect from
|
||||
# *your* CPU, then multiply 54 by 3.3 and clock frequency in GHz.
|
||||
|
||||
# Intel P4 EM64T core was found to run the AMD64 code really slow...
|
||||
# The only way to achieve comparable performance on P4 is to keep
|
||||
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
|
||||
# compose blended code, which would perform even within 30% marginal
|
||||
# on either AMD and Intel platforms, I implement both cases. See
|
||||
# rc4_skey.c for further details... This applies to 0.9.8 and later.
|
||||
# In 0.9.7 context RC4_CHAR codepath is never engaged and ~70 bytes
|
||||
# of code remain redundant.
|
||||
|
||||
$output=shift;
|
||||
|
||||
$win64a=1 if ($output =~ /win64a.[s|asm]/);
|
||||
|
||||
open STDOUT,">$output" || die "can't open $output: $!";
|
||||
|
||||
if (defined($win64a)) {
|
||||
$dat="%rcx"; # arg1
|
||||
$len="%rdx"; # arg2
|
||||
$inp="%rsi"; # r8, arg3 moves here
|
||||
$out="%rdi"; # r9, arg4 moves here
|
||||
} else {
|
||||
$dat="%rdi"; # arg1
|
||||
$len="%rsi"; # arg2
|
||||
$inp="%rdx"; # arg3
|
||||
$out="%rcx"; # arg4
|
||||
}
|
||||
|
||||
$XX="%r10";
|
||||
$TX="%r8";
|
||||
$YY="%r11";
|
||||
$TY="%r9";
|
||||
|
||||
sub PTR() {
|
||||
my $ret=shift;
|
||||
if (defined($win64a)) {
|
||||
$ret =~ s/\[([\S]+)\+([\S]+)\]/[$2+$1]/g; # [%rN+%rM*4]->[%rM*4+%rN]
|
||||
$ret =~ s/:([^\[]+)\[([^\]]+)\]/:[$2+$1]/g; # :off[ea]->:[ea+off]
|
||||
} else {
|
||||
$ret =~ s/[\+\*]/,/g; # [%rN+%rM*4]->[%rN,%rM,4]
|
||||
$ret =~ s/\[([^\]]+)\]/($1)/g; # [%rN]->(%rN)
|
||||
}
|
||||
$ret;
|
||||
}
|
||||
|
||||
$code=<<___ if (!defined($win64a));
|
||||
.text
|
||||
|
||||
.globl RC4
|
||||
.type RC4,\@function
|
||||
.align 16
|
||||
RC4: or $len,$len
|
||||
jne .Lentry
|
||||
repret
|
||||
.Lentry:
|
||||
___
|
||||
$code=<<___ if (defined($win64a));
|
||||
_TEXT SEGMENT
|
||||
PUBLIC RC4
|
||||
ALIGN 16
|
||||
RC4 PROC
|
||||
or $len,$len
|
||||
jne .Lentry
|
||||
repret
|
||||
.Lentry:
|
||||
push %rdi
|
||||
push %rsi
|
||||
sub \$40,%rsp
|
||||
mov %r8,$inp
|
||||
mov %r9,$out
|
||||
___
|
||||
$code.=<<___;
|
||||
add \$8,$dat
|
||||
movl `&PTR("DWORD:-8[$dat]")`,$XX#d
|
||||
movl `&PTR("DWORD:-4[$dat]")`,$YY#d
|
||||
cmpl \$-1,`&PTR("DWORD:256[$dat]")`
|
||||
je .LRC4_CHAR
|
||||
test \$-8,$len
|
||||
jz .Lloop1
|
||||
.align 16
|
||||
.Lloop8:
|
||||
inc $XX#b
|
||||
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
|
||||
add $TX#b,$YY#b
|
||||
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
|
||||
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
|
||||
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
|
||||
add $TX#b,$TY#b
|
||||
inc $XX#b
|
||||
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
|
||||
movb `&PTR("BYTE:[$dat+$TY*4]")`,%al
|
||||
___
|
||||
for ($i=1;$i<=6;$i++) {
|
||||
$code.=<<___;
|
||||
add $TX#b,$YY#b
|
||||
ror \$8,%rax
|
||||
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
|
||||
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
|
||||
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
|
||||
add $TX#b,$TY#b
|
||||
inc $XX#b
|
||||
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
|
||||
movb `&PTR("BYTE:[$dat+$TY*4]")`,%al
|
||||
___
|
||||
}
|
||||
$code.=<<___;
|
||||
add $TX#b,$YY#b
|
||||
ror \$8,%rax
|
||||
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
|
||||
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
|
||||
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
|
||||
sub \$8,$len
|
||||
add $TY#b,$TX#b
|
||||
movb `&PTR("BYTE:[$dat+$TX*4]")`,%al
|
||||
ror \$8,%rax
|
||||
add \$8,$inp
|
||||
add \$8,$out
|
||||
|
||||
xor `&PTR("QWORD:-8[$inp]")`,%rax
|
||||
mov %rax,`&PTR("QWORD:-8[$out]")`
|
||||
|
||||
test \$-8,$len
|
||||
jnz .Lloop8
|
||||
cmp \$0,$len
|
||||
jne .Lloop1
|
||||
.Lexit:
|
||||
movl $XX#d,`&PTR("DWORD:-8[$dat]")`
|
||||
movl $YY#d,`&PTR("DWORD:-4[$dat]")`
|
||||
___
|
||||
$code.=<<___ if (defined($win64a));
|
||||
add \$40,%rsp
|
||||
pop %rsi
|
||||
pop %rdi
|
||||
___
|
||||
$code.=<<___;
|
||||
repret
|
||||
.align 16
|
||||
.Lloop1:
|
||||
movzb `&PTR("BYTE:[$inp]")`,%eax
|
||||
inc $XX#b
|
||||
movl `&PTR("DWORD:[$dat+$XX*4]")`,$TX#d
|
||||
add $TX#b,$YY#b
|
||||
movl `&PTR("DWORD:[$dat+$YY*4]")`,$TY#d
|
||||
movl $TX#d,`&PTR("DWORD:[$dat+$YY*4]")`
|
||||
movl $TY#d,`&PTR("DWORD:[$dat+$XX*4]")`
|
||||
add $TY#b,$TX#b
|
||||
movl `&PTR("DWORD:[$dat+$TX*4]")`,$TY#d
|
||||
xor $TY,%rax
|
||||
inc $inp
|
||||
movb %al,`&PTR("BYTE:[$out]")`
|
||||
inc $out
|
||||
dec $len
|
||||
jnz .Lloop1
|
||||
jmp .Lexit
|
||||
|
||||
.align 16
|
||||
.LRC4_CHAR:
|
||||
inc $XX#b
|
||||
movzb `&PTR("BYTE:[$dat+$XX]")`,$TX#d
|
||||
add $TX#b,$YY#b
|
||||
movzb `&PTR("BYTE:[$dat+$YY]")`,$TY#d
|
||||
movb $TX#b,`&PTR("BYTE:[$dat+$YY]")`
|
||||
movb $TY#b,`&PTR("BYTE:[$dat+$XX]")`
|
||||
add $TX#b,$TY#b
|
||||
movzb `&PTR("BYTE:[$dat+$TY]")`,$TY#d
|
||||
xorb `&PTR("BYTE:[$inp]")`,$TY#b
|
||||
movb $TY#b,`&PTR("BYTE:[$out]")`
|
||||
inc $inp
|
||||
inc $out
|
||||
dec $len
|
||||
jnz .LRC4_CHAR
|
||||
jmp .Lexit
|
||||
___
|
||||
$code.=<<___ if (defined($win64a));
|
||||
RC4 ENDP
|
||||
_TEXT ENDS
|
||||
END
|
||||
___
|
||||
$code.=<<___ if (!defined($win64a));
|
||||
.size RC4,.-RC4
|
||||
___
|
||||
|
||||
$code =~ s/#([bwd])/$1/gm;
|
||||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||||
|
||||
if (defined($win64a)) {
|
||||
$code =~ s/\.align/ALIGN/gm;
|
||||
$code =~ s/[\$%]//gm;
|
||||
$code =~ s/\.L/\$L/gm;
|
||||
$code =~ s/([\w]+)([\s]+)([\S]+),([\S]+)/$1$2$4,$3/gm;
|
||||
$code =~ s/([QD]*WORD|BYTE):/$1 PTR/gm;
|
||||
$code =~ s/mov[bwlq]/mov/gm;
|
||||
$code =~ s/movzb/movzx/gm;
|
||||
$code =~ s/repret/DB\t0F3h,0C3h/gm;
|
||||
$code =~ s/cmpl/cmp/gm;
|
||||
$code =~ s/xorb/xor/gm;
|
||||
} else {
|
||||
$code =~ s/([QD]*WORD|BYTE)://gm;
|
||||
$code =~ s/repret/.byte\t0xF3,0xC3/gm;
|
||||
}
|
||||
print $code;
|
148
crypto/rc4/asm/rc4-ia64.S
Normal file
148
crypto/rc4/asm/rc4-ia64.S
Normal file
|
@ -0,0 +1,148 @@
|
|||
// ====================================================================
|
||||
// Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
// project.
|
||||
//
|
||||
// Rights for redistribution and usage in source and binary forms are
|
||||
// granted according to the OpenSSL license. Warranty of any kind is
|
||||
// disclaimed.
|
||||
// ====================================================================
|
||||
|
||||
.ident "rc4-ia64.S, Version 1.0"
|
||||
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
|
||||
|
||||
// What's wrong with compiler generated code? Because of the nature of
|
||||
// C language, compiler doesn't [dare to] reorder load and stores. But
|
||||
// being memory-bound, RC4 should benefit from reorder [on in-order-
|
||||
// execution core such as IA-64]. But what can we reorder? At the very
|
||||
// least we can safely reorder references to key schedule in respect
|
||||
// to input and output streams. Secondly, less obvious, it's possible
|
||||
// to pull up some references to elements of the key schedule itself.
|
||||
// Fact is that such prior loads are not safe only for "degenerated"
|
||||
// key schedule, when some elements equal to the same value, which is
|
||||
// never the case [key schedule setup routine makes sure it's not].
|
||||
// Furthermore. In order to compress loop body to the minimum, I chose
|
||||
// to deploy deposit instruction, which substitutes for the whole
|
||||
// key->data+((x&255)<<log2(sizeof(key->data[0]))). This unfortunately
|
||||
// requires key->data to be aligned at sizeof(key->data) boundary.
|
||||
// This is why you'll find "RC4_INT pad[512-256-2];" addenum to RC4_KEY
|
||||
// and "d=(RC4_INT *)(((size_t)(d+255))&~(sizeof(key->data)-1));" in
|
||||
// rc4_skey.c [and rc4_enc.c, where it's retained for debugging
|
||||
// purposes]. Throughput is ~210MBps on 900MHz CPU, which is is >3x
|
||||
// faster than gcc generated code and +30% - if compared to HP-UX C.
|
||||
// Unrolling loop below should give >30% on top of that...
|
||||
|
||||
.text
|
||||
.explicit
|
||||
|
||||
#if defined(_HPUX_SOURCE) && !defined(_LP64)
|
||||
# define ADDP addp4
|
||||
#else
|
||||
# define ADDP add
|
||||
#endif
|
||||
|
||||
#define SZ 4 // this is set to sizeof(RC4_INT)
|
||||
// SZ==4 seems to be optimal. At least SZ==8 is not any faster, not for
|
||||
// assembler implementation, while SZ==1 code is ~30% slower.
|
||||
#if SZ==1 // RC4_INT is unsigned char
|
||||
# define LDKEY ld1
|
||||
# define STKEY st1
|
||||
# define OFF 0
|
||||
#elif SZ==4 // RC4_INT is unsigned int
|
||||
# define LDKEY ld4
|
||||
# define STKEY st4
|
||||
# define OFF 2
|
||||
#elif SZ==8 // RC4_INT is unsigned long
|
||||
# define LDKEY ld8
|
||||
# define STKEY st8
|
||||
# define OFF 3
|
||||
#endif
|
||||
|
||||
out=r8; // [expanded] output pointer
|
||||
inp=r9; // [expanded] output pointer
|
||||
prsave=r10;
|
||||
key=r28; // [expanded] pointer to RC4_KEY
|
||||
ksch=r29; // (key->data+255)[&~(sizeof(key->data)-1)]
|
||||
xx=r30;
|
||||
yy=r31;
|
||||
|
||||
// void RC4(RC4_KEY *key,size_t len,const void *inp,void *out);
|
||||
.global RC4#
|
||||
.proc RC4#
|
||||
.align 32
|
||||
.skip 16
|
||||
RC4:
|
||||
.prologue
|
||||
.fframe 0
|
||||
.save ar.pfs,r2
|
||||
.save ar.lc,r3
|
||||
.save pr,prsave
|
||||
{ .mii; alloc r2=ar.pfs,4,12,0,16
|
||||
mov prsave=pr
|
||||
ADDP key=0,in0 };;
|
||||
{ .mib; cmp.eq p6,p0=0,in1 // len==0?
|
||||
mov r3=ar.lc
|
||||
(p6) br.ret.spnt.many b0 };; // emergency exit
|
||||
|
||||
.body
|
||||
.rotr dat[4],key_x[4],tx[2],rnd[2],key_y[2],ty[1];
|
||||
|
||||
{ .mib; LDKEY xx=[key],SZ // load key->x
|
||||
add in1=-1,in1 // adjust len for loop counter
|
||||
nop.b 0 }
|
||||
{ .mib; ADDP inp=0,in2
|
||||
ADDP out=0,in3
|
||||
brp.loop.imp .Ltop,.Lexit-16 };;
|
||||
{ .mmi; LDKEY yy=[key] // load key->y
|
||||
add ksch=(255+1)*SZ,key // as ksch will be used with
|
||||
// deposit instruction only,
|
||||
// I don't have to &~255...
|
||||
mov ar.lc=in1 }
|
||||
{ .mmi; nop.m 0
|
||||
add xx=1,xx
|
||||
mov pr.rot=1<<16 };;
|
||||
{ .mii; nop.m 0
|
||||
dep key_x[1]=xx,ksch,OFF,8
|
||||
mov ar.ec=3 };; // note that epilogue counter
|
||||
// is off by 1. I compensate
|
||||
// for this at exit...
|
||||
.Ltop:
|
||||
// The loop is scheduled for 3*(n+2) spin-rate on Itanium 2, which
|
||||
// theoretically gives asymptotic performance of clock frequency
|
||||
// divided by 3 bytes per seconds, or 500MBps on 1.5GHz CPU. Measured
|
||||
// performance however is distinctly lower than 1/4:-( The culplrit
|
||||
// seems to be *(out++)=dat, which inadvertently splits the bundle,
|
||||
// even though there is M-unit available... Unrolling is due...
|
||||
// Unrolled loop should collect output with variable shift instruction
|
||||
// in order to avoid starvation for integer shifter... Only output
|
||||
// pointer has to be aligned... It should be possible to get pretty
|
||||
// close to theoretical peak...
|
||||
{ .mmi; (p16) LDKEY tx[0]=[key_x[1]] // tx=key[xx]
|
||||
(p17) LDKEY ty[0]=[key_y[1]] // ty=key[yy]
|
||||
(p18) dep rnd[1]=rnd[1],ksch,OFF,8} // &key[(tx+ty)&255]
|
||||
{ .mmi; (p19) st1 [out]=dat[3],1 // *(out++)=dat
|
||||
(p16) add xx=1,xx // x++
|
||||
(p0) nop.i 0 };;
|
||||
{ .mmi; (p18) LDKEY rnd[1]=[rnd[1]] // rnd=key[(tx+ty)&255]
|
||||
(p16) ld1 dat[0]=[inp],1 // dat=*(inp++)
|
||||
(p16) dep key_x[0]=xx,ksch,OFF,8 } // &key[xx&255]
|
||||
{ .mmi; (p0) nop.m 0
|
||||
(p16) add yy=yy,tx[0] // y+=tx
|
||||
(p0) nop.i 0 };;
|
||||
{ .mmi; (p17) STKEY [key_y[1]]=tx[1] // key[yy]=tx
|
||||
(p17) STKEY [key_x[2]]=ty[0] // key[xx]=ty
|
||||
(p16) dep key_y[0]=yy,ksch,OFF,8 } // &key[yy&255]
|
||||
{ .mmb; (p17) add rnd[0]=tx[1],ty[0] // tx+=ty
|
||||
(p18) xor dat[2]=dat[2],rnd[1] // dat^=rnd
|
||||
br.ctop.sptk .Ltop };;
|
||||
.Lexit:
|
||||
{ .mib; STKEY [key]=yy,-SZ // save key->y
|
||||
mov pr=prsave,0x1ffff
|
||||
nop.b 0 }
|
||||
{ .mib; st1 [out]=dat[3],1 // compensate for truncated
|
||||
// epilogue counter
|
||||
add xx=-1,xx
|
||||
nop.b 0 };;
|
||||
{ .mib; STKEY [key]=xx // save key->x
|
||||
mov ar.lc=r3
|
||||
br.ret.sptk.many b0 };;
|
||||
.endp RC4#
|
Loading…
Reference in a new issue