This is an *initial* tune-up. This update puts Itanium2 back on par with

Itanium. I mean if overall performance improvement over C version was X
for Itanium, it's now X even for Itanium2.
This commit is contained in:
Andy Polyakov 2003-01-19 21:31:20 +00:00
parent b01db3b279
commit 30167ace51

View file

@ -1,6 +1,6 @@
.explicit
.text
.ident "ia64.S, Version 1.2"
.ident "ia64.S, Version 2.0"
.ident "IA-64 ISA artwork by Andy Polyakov <appro@fy.chalmers.se>"
//
@ -13,6 +13,35 @@
// disclaimed.
// ====================================================================
//
// Version 2.x is Itanium2 re-tune. Few words about how Itanum2 is
// different from Itanium to this module viewpoint. Most notably, is it
// "wider" than Itanium? Can you experience loop scalability as
// discussed in commentary sections? Not really:-( Itanium2 has 6
// integer ALU ports, i.e. it's 2 ports wider, but it's not enough to
// spin twice as fast, as I need 8 IALU ports. Amount of floating point
// ports is the same, i.e. 2, while I need 4. In other words, to this
// module Itanium2 remains effectively as "wide" as Itanium. Yet it's
// essentially different in respect to this module, and a re-tune was
// required. Well, because some intruction latencies has changed. Most
// noticeably those intensively used:
//
// Itanium Itanium2
// ldf8 9 6 L2 hit
// ld8 2 1 L1 hit
// getf 2 5
// xma[->getf] 7[+1] 4[+0]
// add[->st8] 1[+1] 1[+0]
//
// What does it mean? You might ratiocinate that the original code
// should run just faster... Because sum of latencies is smaller...
// Wrong! Note that getf latency increased. This means that if a loop is
// scheduled for lower latency (and they are), then it will suffer from
// stall condition and the code will therefore turn anti-scalable, e.g.
// original bn_mul_words spun at 5*n or 2.5 times slower than expected
// on Itanium2! What to do? Reschedule loops for Itanium2? But then
// Itanium would exhibit anti-scalability. So I've chosen to reschedule
// for worst latency for every instruction aiming for best *all-round*
// performance.
// Q. How much faster does it get?
// A. Here is the output from 'openssl speed rsa dsa' for vanilla
@ -283,7 +312,7 @@ bn_mul_words:
#ifdef XMA_TEMPTATION
{ .mfi; alloc r2=ar.pfs,4,0,0,0 };;
#else
{ .mfi; alloc r2=ar.pfs,4,4,0,8 };;
{ .mfi; alloc r2=ar.pfs,4,12,0,16 };;
#endif
{ .mib; mov r8=r0 // return value
cmp4.le p6,p0=r34,r0
@ -296,8 +325,8 @@ bn_mul_words:
.body
{ .mib; setf.sig f8=r35 // w
mov pr.rot=0x400001<<16
// ------^----- serves as (p48) at first (p26)
mov pr.rot=0x800001<<16
// ------^----- serves as (p50) at first (p27)
brp.loop.imp .L_bn_mul_words_ctop,.L_bn_mul_words_cend-16
}
@ -312,14 +341,14 @@ bn_mul_words:
mov r15=r33 // ap
#endif
mov ar.lc=r10 }
{ .mii; mov r39=0 // serves as r33 at first (p26)
mov ar.ec=12 };;
{ .mii; mov r40=0 // serves as r35 at first (p27)
mov ar.ec=13 };;
// This loop spins in 2*(n+11) ticks. It's scheduled for data in L2
// cache (i.e. 9 ticks away) as floating point load/store instructions
// This loop spins in 2*(n+12) ticks. It's scheduled for data in Itanium
// L2 cache (i.e. 9 ticks away) as floating point load/store instructions
// bypass L1 cache and L2 latency is actually best-case scenario for
// ldf8. The loop is not scalable and shall run in 2*(n+11) even on
// "wider" IA-64 implementations. It's a trade-off here. n+22 loop
// ldf8. The loop is not scalable and shall run in 2*(n+12) even on
// "wider" IA-64 implementations. It's a trade-off here. n+24 loop
// would give us ~5% in *overall* performance improvement on "wider"
// IA-64, but would hurt Itanium for about same because of longer
// epilogue. As it's a matter of few percents in either case I've
@ -327,25 +356,25 @@ bn_mul_words:
// this very instruction sequence in bn_mul_add_words loop which in
// turn is scalable).
.L_bn_mul_words_ctop:
{ .mfi; (p25) getf.sig r36=f49 // low
(p21) xmpy.lu f45=f37,f8
(p27) cmp.ltu p52,p48=r39,r38 }
{ .mfi; (p25) getf.sig r36=f52 // low
(p21) xmpy.lu f48=f37,f8
(p28) cmp.ltu p54,p50=r41,r39 }
{ .mfi; (p16) ldf8 f32=[r15],8
(p21) xmpy.hu f38=f37,f8
(p21) xmpy.hu f40=f37,f8
(p0) nop.i 0x0 };;
{ .mii; (p26) getf.sig r32=f43 // high
.pred.rel "mutex",p48,p52
(p48) add r38=r37,r33 // (p26)
(p52) add r38=r37,r33,1 } // (p26)
{ .mfb; (p27) st8 [r14]=r39,8
{ .mii; (p25) getf.sig r32=f44 // high
.pred.rel "mutex",p50,p54
(p50) add r40=r38,r35 // (p27)
(p54) add r40=r38,r35,1 } // (p27)
{ .mfb; (p28) st8 [r14]=r41,8
(p0) nop.f 0x0
br.ctop.sptk .L_bn_mul_words_ctop };;
.L_bn_mul_words_cend:
{ .mii; nop.m 0x0
.pred.rel "mutex",p49,p53
(p49) add r8=r34,r0
(p53) add r8=r34,r0,1 }
.pred.rel "mutex",p51,p55
(p51) add r8=r36,r0
(p55) add r8=r36,r0,1 }
{ .mfb; nop.m 0x0
nop.f 0x0
nop.b 0x0 }
@ -412,8 +441,8 @@ bn_mul_add_words:
.body
{ .mib; setf.sig f8=r35 // w
mov pr.rot=0x400001<<16
// ------^----- serves as (p48) at first (p26)
mov pr.rot=0x800001<<16
// ------^----- serves as (p50) at first (p27)
brp.loop.imp .L_bn_mul_add_words_ctop,.L_bn_mul_add_words_cend-16
}
{ .mii;
@ -425,55 +454,55 @@ bn_mul_add_words:
mov r15=r33 // ap
#endif
mov ar.lc=r10 }
{ .mii; mov r39=0 // serves as r33 at first (p26)
{ .mii; mov r40=0 // serves as r35 at first (p27)
#if defined(_HPUX_SOURCE) && defined(_ILP32)
addp4 r18=0,r32 // rp copy
#else
mov r18=r32 // rp copy
#endif
mov ar.ec=14 };;
mov ar.ec=15 };;
// This loop spins in 3*(n+13) ticks on Itanium and should spin in
// 2*(n+13) on "wider" IA-64 implementations (to be verified with new
// This loop spins in 3*(n+14) ticks on Itanium and should spin in
// 2*(n+14) on "wider" IA-64 implementations (to be verified with new
// µ-architecture manuals as they become available). As usual it's
// possible to compress the epilogue, down to 10 in this case, at the
// cost of scalability. Compressed (and therefore non-scalable) loop
// running at 3*(n+10) would buy you ~10% on Itanium but take ~35%
// running at 3*(n+11) would buy you ~10% on Itanium but take ~35%
// from "wider" IA-64 so let it be scalable! Special attention was
// paid for having the loop body split at 64-byte boundary. ld8 is
// scheduled for L1 cache as the data is more than likely there.
// Indeed, bn_mul_words has put it there a moment ago:-)
.L_bn_mul_add_words_ctop:
{ .mfi; (p25) getf.sig r36=f49 // low
(p21) xmpy.lu f45=f37,f8
(p27) cmp.ltu p52,p48=r39,r38 }
{ .mfi; (p25) getf.sig r36=f52 // low
(p21) xmpy.lu f48=f37,f8
(p28) cmp.ltu p54,p50=r41,r39 }
{ .mfi; (p16) ldf8 f32=[r15],8
(p21) xmpy.hu f38=f37,f8
(p27) add r43=r43,r39 };;
{ .mii; (p26) getf.sig r32=f43 // high
.pred.rel "mutex",p48,p52
(p48) add r38=r37,r33 // (p26)
(p52) add r38=r37,r33,1 } // (p26)
{ .mfb; (p27) cmp.ltu.unc p56,p0=r43,r39
(p21) xmpy.hu f40=f37,f8
(p28) add r45=r45,r41 };;
{ .mii; (p25) getf.sig r32=f44 // high
.pred.rel "mutex",p50,p54
(p50) add r40=r38,r35 // (p27)
(p54) add r40=r38,r35,1 } // (p27)
{ .mfb; (p28) cmp.ltu.unc p60,p0=r45,r41
(p0) nop.f 0x0
(p0) nop.b 0x0 }
{ .mii; (p26) ld8 r42=[r18],8
(p58) cmp.eq.or p57,p0=-1,r44
(p58) add r44=1,r44 }
{ .mfb; (p29) st8 [r14]=r45,8
{ .mii; (p27) ld8 r44=[r18],8
(p62) cmp.eq.or p61,p0=-1,r46
(p62) add r46=1,r46 }
{ .mfb; (p30) st8 [r14]=r47,8
(p0) nop.f 0x0
br.ctop.sptk .L_bn_mul_add_words_ctop};;
.L_bn_mul_add_words_cend:
{ .mii; nop.m 0x0
.pred.rel "mutex",p51,p55
(p51) add r8=r36,r0
(p55) add r8=r36,r0,1 }
.pred.rel "mutex",p53,p57
(p53) add r8=r38,r0
(p57) add r8=r38,r0,1 }
{ .mfb; nop.m 0x0
nop.f 0x0
nop.b 0x0 };;
{ .mii;
(p59) add r8=1,r8
(p63) add r8=1,r8
mov pr=r9,0x1ffff
mov ar.lc=r3 }
{ .mfb; rum 1<<5 // clear um.mfh