EC point multiplication: add ladder scaffold

for specialized Montgomery ladder implementations

PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.

The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.

- `ladder_pre` is executed before the main loop of the ladder: by
  default it copies the input point P into S, and doubles it into R.
  Specialized implementations could, e.g., use this hook to transition
  to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
  computes `S := R+S; R := 2R;`, but specific implementations could,
  e.g., implement a more efficient formula for differential
  addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
  it's a noop, but specialized implementations could, e.g., use this
  hook to transition back from the coordinate system used for optimizing
  the differential addition-and-doubling or recover the y coordinate of
  the result point.

This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.

Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>

Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
This commit is contained in:
Nicola Tuveri 2018-07-08 00:50:49 +03:00 committed by Matt Caswell
parent 51f3021d97
commit 3712436071
14 changed files with 208 additions and 63 deletions

View file

@ -9,6 +9,13 @@
Changes between 1.1.0h and 1.1.1 [xx XXX xxxx]
*) Add a scaffold to optionally enhance the Montgomery ladder implementation
for `ec_scalar_mul_ladder` (formerly `ec_mul_consttime`) allowing
EC_METHODs to implement their own specialized "ladder step", to take
advantage of more favorable coordinate systems or more efficient
differential addition-and-doubling algorithms.
[Billy Bob Brumley, Sohaib ul Hassan, Nicola Tuveri]
*) Modified the random device based seed sources to keep the relevant
file descriptors open rather than reopening them on each access.
This allows such sources to operate in a chroot() jail without

View file

@ -66,7 +66,10 @@ const EC_METHOD *EC_GF2m_simple_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
0 /* blind_coordinates */
0, /* blind_coordinates */
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -226,6 +226,8 @@ static const ERR_STRING_DATA EC_str_functs[] = {
{ERR_PACK(ERR_LIB_EC, EC_F_EC_POINT_SET_TO_INFINITY, 0),
"EC_POINT_set_to_infinity"},
{ERR_PACK(ERR_LIB_EC, EC_F_EC_PRE_COMP_NEW, 0), "ec_pre_comp_new"},
{ERR_PACK(ERR_LIB_EC, EC_F_EC_SCALAR_MUL_LADDER, 0),
"ec_scalar_mul_ladder"},
{ERR_PACK(ERR_LIB_EC, EC_F_EC_WNAF_MUL, 0), "ec_wNAF_mul"},
{ERR_PACK(ERR_LIB_EC, EC_F_EC_WNAF_PRECOMPUTE_MULT, 0),
"ec_wNAF_precompute_mult"},
@ -314,6 +316,9 @@ static const ERR_STRING_DATA EC_str_reasons[] = {
"invalid trinomial basis"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_KDF_PARAMETER_ERROR), "kdf parameter error"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_KEYS_NOT_SET), "keys not set"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_LADDER_POST_FAILURE), "ladder post failure"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_LADDER_PRE_FAILURE), "ladder pre failure"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_LADDER_STEP_FAILURE), "ladder step failure"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_MISSING_PARAMETERS), "missing parameters"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_MISSING_PRIVATE_KEY), "missing private key"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_NEED_NEW_SETUP_VALUES),
@ -333,6 +338,8 @@ static const ERR_STRING_DATA EC_str_reasons[] = {
{ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_ARITHMETIC_FAILURE),
"point arithmetic failure"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_AT_INFINITY), "point at infinity"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_COORDINATES_BLIND_FAILURE),
"point coordinates blind failure"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_POINT_IS_NOT_ON_CURVE),
"point is not on curve"},
{ERR_PACK(ERR_LIB_EC, 0, EC_R_RANDOM_NUMBER_GENERATION_FAILED),

View file

@ -178,6 +178,15 @@ struct ec_method_st {
int (*field_inverse_mod_ord)(const EC_GROUP *, BIGNUM *r,
const BIGNUM *x, BN_CTX *);
int (*blind_coordinates)(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx);
int (*ladder_pre)(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx);
int (*ladder_step)(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx);
int (*ladder_post)(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx);
};
/*
@ -638,3 +647,42 @@ void X25519_public_from_private(uint8_t out_public_value[32],
const uint8_t private_key[32]);
int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx);
static inline int ec_point_ladder_pre(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
if (group->meth->ladder_pre != NULL)
return group->meth->ladder_pre(group, r, s, p, ctx);
if (!EC_POINT_copy(s, p)
|| !EC_POINT_dbl(group, r, s, ctx))
return 0;
return 1;
}
static inline int ec_point_ladder_step(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
if (group->meth->ladder_step != NULL)
return group->meth->ladder_step(group, r, s, p, ctx);
if (!EC_POINT_add(group, s, r, s, ctx)
|| !EC_POINT_dbl(group, r, r, ctx))
return 0;
return 1;
}
static inline int ec_point_ladder_post(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
if (group->meth->ladder_post != NULL)
return group->meth->ladder_post(group, r, s, p, ctx);
return 1;
}

View file

@ -108,10 +108,9 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
} while(0)
/*-
* This functions computes (in constant time) a point multiplication over the
* EC group.
*
* At a high level, it is Montgomery ladder with conditional swaps.
* This functions computes a single point multiplication over the EC group,
* using, at a high level, a Montgomery ladder with conditional swaps, with
* various timing attack defenses.
*
* It performs either a fixed point multiplication
* (scalar * generator)
@ -119,20 +118,25 @@ void EC_ec_pre_comp_free(EC_PRE_COMP *pre)
* (scalar * point)
* when point is not NULL.
*
* scalar should be in the range [0,n) otherwise all constant time bets are off.
* `scalar` cannot be NULL and should be in the range [0,n) otherwise all
* constant time bets are off (where n is the cardinality of the EC group).
*
* NB: This says nothing about EC_POINT_add and EC_POINT_dbl,
* which of course are not constant time themselves.
* NB: This says nothing about the constant-timeness of the ladder step
* implementation (i.e., the default implementation is based on EC_POINT_add and
* EC_POINT_dbl, which of course are not constant time themselves) or the
* underlying multiprecision arithmetic.
*
* The product is stored in r.
* The product is stored in `r`.
*
* Returns 1 on success, 0 otherwise.
*/
static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar, const EC_POINT *point,
BN_CTX *ctx)
static
int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r,
const BIGNUM *scalar, const EC_POINT *point,
BN_CTX *ctx)
{
int i, cardinality_bits, group_top, kbit, pbit, Z_is_one;
EC_POINT *p = NULL;
EC_POINT *s = NULL;
BIGNUM *k = NULL;
BIGNUM *lambda = NULL;
@ -140,30 +144,49 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
BN_CTX *new_ctx = NULL;
int ret = 0;
/* early exit if the input point is the point at infinity */
if (point != NULL && EC_POINT_is_at_infinity(group, point))
return EC_POINT_set_to_infinity(group, r);
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
return 0;
BN_CTX_start(ctx);
s = EC_POINT_new(group);
if (s == NULL)
if (((p = EC_POINT_new(group)) == NULL)
|| ((s = EC_POINT_new(group)) == NULL)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
goto err;
if (point == NULL) {
if (!EC_POINT_copy(s, group->generator))
goto err;
} else {
if (!EC_POINT_copy(s, point))
goto err;
}
if (point == NULL) {
if (!EC_POINT_copy(p, group->generator)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
goto err;
}
} else {
if (!EC_POINT_copy(p, point)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB);
goto err;
}
}
EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME);
EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME);
cardinality = BN_CTX_get(ctx);
lambda = BN_CTX_get(ctx);
k = BN_CTX_get(ctx);
if (k == NULL || !BN_mul(cardinality, group->order, group->cofactor, ctx))
if (k == NULL) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE);
goto err;
}
if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
/*
* Group cardinalities are often on a word boundary.
@ -174,11 +197,15 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
cardinality_bits = BN_num_bits(cardinality);
group_top = bn_get_top(cardinality);
if ((bn_wexpand(k, group_top + 1) == NULL)
|| (bn_wexpand(lambda, group_top + 1) == NULL))
|| (bn_wexpand(lambda, group_top + 1) == NULL)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
if (!BN_copy(k, scalar))
if (!BN_copy(k, scalar)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(k, BN_FLG_CONSTTIME);
@ -187,15 +214,21 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
* this is an unusual input, and we don't guarantee
* constant-timeness
*/
if (!BN_nnmod(k, k, cardinality, ctx))
if (!BN_nnmod(k, k, cardinality, ctx)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
}
if (!BN_add(lambda, k, cardinality))
if (!BN_add(lambda, k, cardinality)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(lambda, BN_FLG_CONSTTIME);
if (!BN_add(k, lambda, cardinality))
if (!BN_add(k, lambda, cardinality)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
/*
* lambda := scalar + cardinality
* k := scalar + 2*cardinality
@ -209,8 +242,13 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
|| (bn_wexpand(s->Z, group_top) == NULL)
|| (bn_wexpand(r->X, group_top) == NULL)
|| (bn_wexpand(r->Y, group_top) == NULL)
|| (bn_wexpand(r->Z, group_top) == NULL))
|| (bn_wexpand(r->Z, group_top) == NULL)
|| (bn_wexpand(p->X, group_top) == NULL)
|| (bn_wexpand(p->Y, group_top) == NULL)
|| (bn_wexpand(p->Z, group_top) == NULL)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB);
goto err;
}
/*-
* Apply coordinate blinding for EC_POINT.
@ -220,19 +258,19 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
* success or if coordinate blinding is not implemented for this
* group.
*/
if (!ec_point_blind_coordinates(group, s, ctx))
if (!ec_point_blind_coordinates(group, p, ctx)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_POINT_COORDINATES_BLIND_FAILURE);
goto err;
}
/* Initialize the Montgomery ladder */
if (!ec_point_ladder_pre(group, r, s, p, ctx)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE);
goto err;
}
/* top bit is a 1, in a fixed pos */
if (!EC_POINT_copy(r, s))
goto err;
EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME);
if (!EC_POINT_dbl(group, s, s, ctx))
goto err;
pbit = 0;
pbit = 1;
#define EC_POINT_CSWAP(c, a, b, w, t) do { \
BN_consttime_swap(c, (a)->X, (b)->X, w); \
@ -304,10 +342,12 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
for (i = cardinality_bits - 1; i >= 0; i--) {
kbit = BN_is_bit_set(k, i) ^ pbit;
EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one);
if (!EC_POINT_add(group, s, r, s, ctx))
goto err;
if (!EC_POINT_dbl(group, r, r, ctx))
/* Perform a single step of the Montgomery ladder */
if (!ec_point_ladder_step(group, r, s, p, ctx)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE);
goto err;
}
/*
* pbit logic merges this cswap with that of the
* next iteration
@ -318,9 +358,16 @@ static int ec_mul_consttime(const EC_GROUP *group, EC_POINT *r,
EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one);
#undef EC_POINT_CSWAP
/* Finalize ladder (and recover full point coordinates) */
if (!ec_point_ladder_post(group, r, s, p, ctx)) {
ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE);
goto err;
}
ret = 1;
err:
EC_POINT_free(p);
EC_POINT_free(s);
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
@ -391,29 +438,30 @@ int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar,
if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) {
/*-
* Handle the common cases where the scalar is secret, enforcing a constant
* time scalar multiplication algorithm.
* Handle the common cases where the scalar is secret, enforcing a
* scalar multiplication implementation based on a Montgomery ladder,
* with various timing attack defenses.
*/
if ((scalar != NULL) && (num == 0)) {
/*-
* In this case we want to compute scalar * GeneratorPoint: this
* codepath is reached most prominently by (ephemeral) key generation
* of EC cryptosystems (i.e. ECDSA keygen and sign setup, ECDH
* keygen/first half), where the scalar is always secret. This is why
* we ignore if BN_FLG_CONSTTIME is actually set and we always call the
* constant time version.
* codepath is reached most prominently by (ephemeral) key
* generation of EC cryptosystems (i.e. ECDSA keygen and sign setup,
* ECDH keygen/first half), where the scalar is always secret. This
* is why we ignore if BN_FLG_CONSTTIME is actually set and we
* always call the ladder version.
*/
return ec_mul_consttime(group, r, scalar, NULL, ctx);
return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx);
}
if ((scalar == NULL) && (num == 1)) {
/*-
* In this case we want to compute scalar * GenericPoint: this codepath
* is reached most prominently by the second half of ECDH, where the
* secret scalar is multiplied by the peer's public point. To protect
* the secret scalar, we ignore if BN_FLG_CONSTTIME is actually set and
* we always call the constant time version.
* In this case we want to compute scalar * VariablePoint: this
* codepath is reached most prominently by the second half of ECDH,
* where the secret scalar is multiplied by the peer's public point.
* To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is
* actually set and we always call the ladder version.
*/
return ec_mul_consttime(group, r, scalars[0], points[0], ctx);
return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx);
}
}

View file

@ -63,7 +63,10 @@ const EC_METHOD *EC_GFp_mont_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates
ec_GFp_simple_blind_coordinates,
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -65,7 +65,10 @@ const EC_METHOD *EC_GFp_nist_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates
ec_GFp_simple_blind_coordinates,
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -292,7 +292,10 @@ const EC_METHOD *EC_GFp_nistp224_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
0 /* blind_coordinates */
0, /* blind_coordinates */
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -1821,7 +1821,12 @@ const EC_METHOD *EC_GFp_nistp256_method(void)
ec_key_simple_generate_public_key,
0, /* keycopy */
0, /* keyfinish */
ecdh_simple_compute_key
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
0, /* blind_coordinates */
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -1660,7 +1660,10 @@ const EC_METHOD *EC_GFp_nistp521_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
0 /* blind_coordinates */
0, /* blind_coordinates */
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -1731,7 +1731,10 @@ const EC_METHOD *EC_GFp_nistz256_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */
0 /* blind_coordinates */
0, /* blind_coordinates */
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;

View file

@ -64,7 +64,10 @@ const EC_METHOD *EC_GFp_simple_method(void)
0, /* keyfinish */
ecdh_simple_compute_key,
0, /* field_inverse_mod_ord */
ec_GFp_simple_blind_coordinates
ec_GFp_simple_blind_coordinates,
0, /* ladder_pre */
0, /* ladder_step */
0 /* ladder_post */
};
return &ret;
@ -1418,4 +1421,3 @@ int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
BN_CTX_end(ctx);
return ret;
}

View file

@ -630,6 +630,7 @@ EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP:126:\
EC_POINT_set_Jprojective_coordinates_GFp
EC_F_EC_POINT_SET_TO_INFINITY:127:EC_POINT_set_to_infinity
EC_F_EC_PRE_COMP_NEW:196:ec_pre_comp_new
EC_F_EC_SCALAR_MUL_LADDER:284:ec_scalar_mul_ladder
EC_F_EC_WNAF_MUL:187:ec_wNAF_mul
EC_F_EC_WNAF_PRECOMPUTE_MULT:188:ec_wNAF_precompute_mult
EC_F_I2D_ECPARAMETERS:190:i2d_ECParameters
@ -2130,6 +2131,9 @@ EC_R_INVALID_PRIVATE_KEY:123:invalid private key
EC_R_INVALID_TRINOMIAL_BASIS:137:invalid trinomial basis
EC_R_KDF_PARAMETER_ERROR:148:kdf parameter error
EC_R_KEYS_NOT_SET:140:keys not set
EC_R_LADDER_POST_FAILURE:136:ladder post failure
EC_R_LADDER_PRE_FAILURE:153:ladder pre failure
EC_R_LADDER_STEP_FAILURE:162:ladder step failure
EC_R_MISSING_PARAMETERS:124:missing parameters
EC_R_MISSING_PRIVATE_KEY:125:missing private key
EC_R_NEED_NEW_SETUP_VALUES:157:need new setup values
@ -2144,6 +2148,7 @@ EC_R_PEER_KEY_ERROR:149:peer key error
EC_R_PKPARAMETERS2GROUP_FAILURE:127:pkparameters2group failure
EC_R_POINT_ARITHMETIC_FAILURE:155:point arithmetic failure
EC_R_POINT_AT_INFINITY:106:point at infinity
EC_R_POINT_COORDINATES_BLIND_FAILURE:163:point coordinates blind failure
EC_R_POINT_IS_NOT_ON_CURVE:107:point is not on curve
EC_R_RANDOM_NUMBER_GENERATION_FAILED:158:random number generation failed
EC_R_SHARED_INFO_ERROR:150:shared info error

View file

@ -156,6 +156,7 @@ int ERR_load_EC_strings(void);
# define EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP 126
# define EC_F_EC_POINT_SET_TO_INFINITY 127
# define EC_F_EC_PRE_COMP_NEW 196
# define EC_F_EC_SCALAR_MUL_LADDER 284
# define EC_F_EC_WNAF_MUL 187
# define EC_F_EC_WNAF_PRECOMPUTE_MULT 188
# define EC_F_I2D_ECPARAMETERS 190
@ -222,6 +223,9 @@ int ERR_load_EC_strings(void);
# define EC_R_INVALID_TRINOMIAL_BASIS 137
# define EC_R_KDF_PARAMETER_ERROR 148
# define EC_R_KEYS_NOT_SET 140
# define EC_R_LADDER_POST_FAILURE 136
# define EC_R_LADDER_PRE_FAILURE 153
# define EC_R_LADDER_STEP_FAILURE 162
# define EC_R_MISSING_PARAMETERS 124
# define EC_R_MISSING_PRIVATE_KEY 125
# define EC_R_NEED_NEW_SETUP_VALUES 157
@ -236,6 +240,7 @@ int ERR_load_EC_strings(void);
# define EC_R_PKPARAMETERS2GROUP_FAILURE 127
# define EC_R_POINT_ARITHMETIC_FAILURE 155
# define EC_R_POINT_AT_INFINITY 106
# define EC_R_POINT_COORDINATES_BLIND_FAILURE 163
# define EC_R_POINT_IS_NOT_ON_CURVE 107
# define EC_R_RANDOM_NUMBER_GENERATION_FAILED 158
# define EC_R_SHARED_INFO_ERROR 150