Remove the last bn_wexpand()s that made us break constness. Of

course, that means we need to handle the cases where the two arrays to
bn_mul_recursive() and bn_mul_part_recursive() differ in size.

I haven't yet changed the comments that describe bn_mul_recursive()
and bn_mul_part_recursive().  I want this to be tested by more people
before I consider this change final.  Please test away!
This commit is contained in:
Richard Levitte 2000-12-04 17:11:59 +00:00
parent e5164b7041
commit 6a2347ee45
2 changed files with 94 additions and 54 deletions

View file

@ -404,9 +404,10 @@ void bn_sqr_comba4(BN_ULONG *r,const BN_ULONG *a);
int bn_cmp_words(const BN_ULONG *a,const BN_ULONG *b,int n);
int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
int cl, int dl);
void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,BN_ULONG *t);
void bn_mul_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,
int dna,int dnb,BN_ULONG *t);
void bn_mul_part_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,
int tn, int n,BN_ULONG *t);
int n,int tna,int tnb,BN_ULONG *t);
void bn_sqr_recursive(BN_ULONG *r,const BN_ULONG *a, int n2, BN_ULONG *t);
void bn_mul_low_normal(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b, int n);
void bn_mul_low_recursive(BN_ULONG *r,BN_ULONG *a,BN_ULONG *b,int n2,

View file

@ -383,9 +383,10 @@ BN_ULONG bn_add_part_words(BN_ULONG *r,
* a[1]*b[1]
*/
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
BN_ULONG *t)
int dna, int dnb, BN_ULONG *t)
{
int n=n2/2,c1,c2;
int tna=n+dna, tnb=n+dnb;
unsigned int neg,zero;
BN_ULONG ln,lo,*p;
@ -413,21 +414,21 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_words(a,&(a[n]),n);
c2=bn_cmp_words(&(b[n]),b,n);
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
zero=neg=0;
switch (c1*3+c2)
{
case -4:
bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
break;
case -3:
zero=1;
break;
case -2:
bn_sub_words(t, &(a[n]),a, n); /* - */
bn_sub_words(&(t[n]),&(b[n]),b, n); /* + */
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
neg=1;
break;
case -1:
@ -436,16 +437,16 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
zero=1;
break;
case 2:
bn_sub_words(t, a, &(a[n]),n); /* + */
bn_sub_words(&(t[n]),b, &(b[n]),n); /* - */
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
neg=1;
break;
case 3:
zero=1;
break;
case 4:
bn_sub_words(t, a, &(a[n]),n);
bn_sub_words(&(t[n]),&(b[n]),b, n);
bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
break;
}
@ -475,11 +476,11 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
{
p= &(t[n2*2]);
if (!zero)
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
else
memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
bn_mul_recursive(r,a,b,n,p);
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
bn_mul_recursive(r,a,b,n,0,0,p);
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
}
/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
@ -528,8 +529,8 @@ void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
/* n+tn is the word length
* t needs to be n*4 is size, as does r */
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
int n, BN_ULONG *t)
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
int tna, int tnb, BN_ULONG *t)
{
int i,j,n2=n*2;
unsigned int c1,c2,neg,zero;
@ -537,31 +538,30 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
# ifdef BN_COUNT
fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
tn, n,tn, n);
tna, n, tnb, n);
# endif
if (n < 8)
{
i=tn+n;
bn_mul_normal(r,a,i,b,i);
bn_mul_normal(r,a,n+tna,b,n+tnb);
return;
}
/* r=(a[0]-a[1])*(b[1]-b[0]) */
c1=bn_cmp_part_words(a,&(a[n]),tn,n-tn);
c2=bn_cmp_part_words(&(b[n]),b,tn,tn-n);
c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
zero=neg=0;
switch (c1*3+c2)
{
case -4:
bn_sub_part_words(t, &(a[n]),a, tn,tn-n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tn,n-tn); /* - */
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
break;
case -3:
zero=1;
/* break; */
case -2:
bn_sub_part_words(t, &(a[n]),a, tn,tn-n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tn,tn-n); /* + */
bn_sub_part_words(t, &(a[n]),a, tna,tna-n); /* - */
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n); /* + */
neg=1;
break;
case -1:
@ -570,16 +570,16 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
zero=1;
/* break; */
case 2:
bn_sub_part_words(t, a, &(a[n]),tn,n-tn); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tn,n-tn); /* - */
bn_sub_part_words(t, a, &(a[n]),tna,n-tna); /* + */
bn_sub_part_words(&(t[n]),b, &(b[n]),tnb,n-tnb); /* - */
neg=1;
break;
case 3:
zero=1;
/* break; */
case 4:
bn_sub_part_words(t, a, &(a[n]),tn,n-tn);
bn_sub_part_words(&(t[n]),&(b[n]),b, tn,tn-n);
bn_sub_part_words(t, a, &(a[n]),tna,n-tna);
bn_sub_part_words(&(t[n]),&(b[n]),b, tnb,tnb-n);
break;
}
/* The zero case isn't yet implemented here. The speedup
@ -598,54 +598,59 @@ void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
{
bn_mul_comba8(&(t[n2]),t,&(t[n]));
bn_mul_comba8(r,a,b);
bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
}
else
{
p= &(t[n2*2]);
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
bn_mul_recursive(r,a,b,n,p);
bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
bn_mul_recursive(r,a,b,n,0,0,p);
i=n/2;
/* If there is only a bottom half to the number,
* just do it */
j=tn-i;
if (tna > tnb)
j = tna - i;
else
j = tnb - i;
if (j == 0)
{
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
i,tna-i,tnb-i,p);
memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
}
else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
{
bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
j,i,p);
memset(&(r[n2+tn*2]),0,
sizeof(BN_ULONG)*(n2-tn*2));
i,tna-i,tnb-i,p);
memset(&(r[n2+tna+tnb]),0,
sizeof(BN_ULONG)*(n2-tna-tnb));
}
else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
{
memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
{
bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
}
else
{
for (;;)
{
i/=2;
if (i < tn)
if (i < tna && i < tnb)
{
bn_mul_part_recursive(&(r[n2]),
&(a[n]),&(b[n]),
tn-i,i,p);
i,tna-i,tnb-i,p);
break;
}
else if (i == tn)
else if (i <= tna && i <= tnb)
{
bn_mul_recursive(&(r[n2]),
&(a[n]),&(b[n]),
i,p);
i,tna-i,tnb-i,p);
break;
}
}
@ -709,7 +714,7 @@ void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
# endif
bn_mul_recursive(r,a,b,n,&(t[0]));
bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
{
bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
@ -793,8 +798,8 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
else
# endif
{
bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
}
/* s0 == low(al*bl)
@ -917,11 +922,11 @@ void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
}
#endif /* BN_RECURSION */
int BN_mul(BIGNUM *r, /* almost const */ const BIGNUM *a, /* almost const */ const BIGNUM *b, BN_CTX *ctx)
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
{
int ret=0;
int top,al,bl;
BIGNUM *rr;
int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
int i;
#endif
@ -929,7 +934,6 @@ int BN_mul(BIGNUM *r, /* almost const */ const BIGNUM *a, /* almost const */ con
BIGNUM *t;
int j,k;
#endif
BIGNUM *free_a = NULL, *free_b = NULL;
#ifdef BN_COUNT
fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
@ -985,6 +989,42 @@ int BN_mul(BIGNUM *r, /* almost const */ const BIGNUM *a, /* almost const */ con
#ifdef BN_RECURSION
if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
{
if (i >= -1 && i <= 1)
{
int sav_j =0;
/* Find out the power of two lower or equal
to the longest of the two numbers */
if (i >= 0)
{
j = BN_num_bits_word((BN_ULONG)al);
}
if (i == -1)
{
j = BN_num_bits_word((BN_ULONG)bl);
}
sav_j = j;
j = 1<<(j-1);
assert(j <= al || j <= bl);
k = j+j;
t = BN_CTX_get(ctx);
if (al > j || bl > j)
{
bn_wexpand(t,k*4);
bn_wexpand(rr,k*4);
bn_mul_part_recursive(rr->d,a->d,b->d,
j,al-j,bl-j,t->d);
}
else /* al <= j || bl <= j */
{
bn_wexpand(t,k*2);
bn_wexpand(rr,k*2);
bn_mul_recursive(rr->d,a->d,b->d,
j,al-j,bl-j,t->d);
}
rr->top=top;
goto end;
}
#if 0
if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
{
BIGNUM *tmp_bn = (BIGNUM *)b;
@ -1024,6 +1064,7 @@ int BN_mul(BIGNUM *r, /* almost const */ const BIGNUM *a, /* almost const */ con
rr->top=top;
goto end;
}
#endif
}
#endif /* BN_RECURSION */
if (bn_wexpand(rr,top) == NULL) goto err;
@ -1037,8 +1078,6 @@ end:
if (r != rr) BN_copy(r,rr);
ret=1;
err:
if (free_a) BN_free(free_a);
if (free_b) BN_free(free_b);
BN_CTX_end(ctx);
return(ret);
}