ASN1 INTEGER refactor.

Rewrite and tidy ASN1_INTEGER and ASN1_ENUMERATED handling.

Remove code duplication.

New functions to convert between int64_t and ASN.1 types without the
quirks of the old long conversion functions.

Add documentation.

Reviewed-by: Rich Salz <rsalz@openssl.org>
This commit is contained in:
Dr. Stephen Henson 2015-05-15 00:00:41 +01:00
parent 978327bcad
commit 6c5b6cb035
8 changed files with 522 additions and 579 deletions

View file

@ -17,7 +17,7 @@ GENERAL=Makefile README
LIB=$(TOP)/libcrypto.a
LIBSRC= a_object.c a_bitstr.c a_utctm.c a_gentm.c a_time.c a_int.c a_octet.c \
a_print.c a_type.c a_dup.c a_d2i_fp.c a_i2d_fp.c \
a_enum.c a_utf8.c a_sign.c a_digest.c a_verify.c a_mbstr.c a_strex.c \
a_utf8.c a_sign.c a_digest.c a_verify.c a_mbstr.c a_strex.c \
x_algor.c x_val.c x_pubkey.c x_sig.c x_req.c x_bignum.c \
x_long.c x_x509.c x_x509a.c x_crl.c x_info.c x_spki.c nsseq.c \
x_nx509.c d2i_pu.c d2i_pr.c i2d_pu.c i2d_pr.c\
@ -25,13 +25,13 @@ LIBSRC= a_object.c a_bitstr.c a_utctm.c a_gentm.c a_time.c a_int.c a_octet.c \
tasn_new.c tasn_fre.c tasn_enc.c tasn_dec.c tasn_utl.c tasn_typ.c \
tasn_prn.c tasn_scn.c ameth_lib.c \
f_int.c f_string.c n_pkey.c \
f_enum.c x_pkey.c bio_asn1.c bio_ndef.c asn_mime.c \
x_pkey.c bio_asn1.c bio_ndef.c asn_mime.c \
asn1_gen.c asn1_par.c asn1_lib.c asn1_err.c a_strnid.c \
evp_asn1.c asn_pack.c p5_pbe.c p5_pbev2.c p8_pkey.c asn_moid.c \
asn_mstbl.c
LIBOBJ= a_object.o a_bitstr.o a_utctm.o a_gentm.o a_time.o a_int.o a_octet.o \
a_print.o a_type.o a_dup.o a_d2i_fp.o a_i2d_fp.o \
a_enum.o a_utf8.o a_sign.o a_digest.o a_verify.o a_mbstr.o a_strex.o \
a_utf8.o a_sign.o a_digest.o a_verify.o a_mbstr.o a_strex.o \
x_algor.o x_val.o x_pubkey.o x_sig.o x_req.o x_bignum.o \
x_long.o x_x509.o x_x509a.o x_crl.o x_info.o x_spki.o nsseq.o \
x_nx509.o d2i_pu.o d2i_pr.o i2d_pu.o i2d_pr.o \
@ -39,7 +39,7 @@ LIBOBJ= a_object.o a_bitstr.o a_utctm.o a_gentm.o a_time.o a_int.o a_octet.o \
tasn_new.o tasn_fre.o tasn_enc.o tasn_dec.o tasn_utl.o tasn_typ.o \
tasn_prn.o tasn_scn.o ameth_lib.o \
f_int.o f_string.o n_pkey.o \
f_enum.o x_pkey.o bio_asn1.o bio_ndef.o asn_mime.o \
x_pkey.o bio_asn1.o bio_ndef.o asn_mime.o \
asn1_gen.o asn1_par.o asn1_lib.o asn1_err.o a_strnid.o \
evp_asn1.o asn_pack.o p5_pbe.o p5_pbev2.o p8_pkey.o asn_moid.o \
asn_mstbl.o
@ -133,14 +133,6 @@ a_dup.o: ../../include/openssl/opensslv.h ../../include/openssl/ossl_typ.h
a_dup.o: ../../include/openssl/safestack.h ../../include/openssl/stack.h
a_dup.o: ../../include/openssl/symhacks.h ../include/internal/cryptlib.h
a_dup.o: a_dup.c
a_enum.o: ../../e_os.h ../../include/openssl/asn1.h ../../include/openssl/bio.h
a_enum.o: ../../include/openssl/bn.h ../../include/openssl/buffer.h
a_enum.o: ../../include/openssl/crypto.h ../../include/openssl/e_os2.h
a_enum.o: ../../include/openssl/err.h ../../include/openssl/lhash.h
a_enum.o: ../../include/openssl/opensslconf.h ../../include/openssl/opensslv.h
a_enum.o: ../../include/openssl/ossl_typ.h ../../include/openssl/safestack.h
a_enum.o: ../../include/openssl/stack.h ../../include/openssl/symhacks.h
a_enum.o: ../include/internal/cryptlib.h a_enum.c
a_gentm.o: ../../e_os.h ../../include/openssl/asn1.h
a_gentm.o: ../../include/openssl/bio.h ../../include/openssl/buffer.h
a_gentm.o: ../../include/openssl/crypto.h ../../include/openssl/e_os2.h
@ -441,14 +433,6 @@ evp_asn1.o: ../../include/openssl/opensslv.h ../../include/openssl/ossl_typ.h
evp_asn1.o: ../../include/openssl/safestack.h ../../include/openssl/stack.h
evp_asn1.o: ../../include/openssl/symhacks.h ../include/internal/cryptlib.h
evp_asn1.o: evp_asn1.c
f_enum.o: ../../e_os.h ../../include/openssl/asn1.h ../../include/openssl/bio.h
f_enum.o: ../../include/openssl/buffer.h ../../include/openssl/crypto.h
f_enum.o: ../../include/openssl/e_os2.h ../../include/openssl/err.h
f_enum.o: ../../include/openssl/lhash.h ../../include/openssl/opensslconf.h
f_enum.o: ../../include/openssl/opensslv.h ../../include/openssl/ossl_typ.h
f_enum.o: ../../include/openssl/safestack.h ../../include/openssl/stack.h
f_enum.o: ../../include/openssl/symhacks.h ../include/internal/cryptlib.h
f_enum.o: f_enum.c
f_int.o: ../../e_os.h ../../include/openssl/asn1.h ../../include/openssl/bio.h
f_int.o: ../../include/openssl/buffer.h ../../include/openssl/crypto.h
f_int.o: ../../include/openssl/e_os2.h ../../include/openssl/err.h

View file

@ -1,179 +0,0 @@
/* crypto/asn1/a_enum.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/asn1.h>
#include <openssl/bn.h>
/*
* Code for ENUMERATED type: identical to INTEGER apart from a different tag.
* for comments on encoding see a_int.c
*/
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
{
int j, k;
unsigned int i;
unsigned char buf[sizeof(long) + 1];
long d;
a->type = V_ASN1_ENUMERATED;
if (a->length < (int)(sizeof(long) + 1)) {
OPENSSL_free(a->data);
if ((a->data = OPENSSL_malloc(sizeof(long) + 1)) != NULL)
memset(a->data, 0, sizeof(long) + 1);
}
if (a->data == NULL) {
ASN1err(ASN1_F_ASN1_ENUMERATED_SET, ERR_R_MALLOC_FAILURE);
return (0);
}
d = v;
if (d < 0) {
d = -d;
a->type = V_ASN1_NEG_ENUMERATED;
}
for (i = 0; i < sizeof(long); i++) {
if (d == 0)
break;
buf[i] = (int)d & 0xff;
d >>= 8;
}
j = 0;
for (k = i - 1; k >= 0; k--)
a->data[j++] = buf[k];
a->length = j;
return (1);
}
long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a)
{
int neg = 0, i;
long r = 0;
if (a == NULL)
return (0L);
i = a->type;
if (i == V_ASN1_NEG_ENUMERATED)
neg = 1;
else if (i != V_ASN1_ENUMERATED)
return -1;
if (a->length > (int)sizeof(long)) {
/* hmm... a bit ugly */
return (0xffffffffL);
}
if (a->data == NULL)
return 0;
for (i = 0; i < a->length; i++) {
r <<= 8;
r |= (unsigned char)a->data[i];
}
if (neg)
r = -r;
return (r);
}
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(BIGNUM *bn, ASN1_ENUMERATED *ai)
{
ASN1_ENUMERATED *ret;
int len, j;
if (ai == NULL)
ret = ASN1_ENUMERATED_new();
else
ret = ai;
if (ret == NULL) {
ASN1err(ASN1_F_BN_TO_ASN1_ENUMERATED, ERR_R_NESTED_ASN1_ERROR);
goto err;
}
if (BN_is_negative(bn))
ret->type = V_ASN1_NEG_ENUMERATED;
else
ret->type = V_ASN1_ENUMERATED;
j = BN_num_bits(bn);
len = ((j == 0) ? 0 : ((j / 8) + 1));
if (ret->length < len + 4) {
unsigned char *new_data = OPENSSL_realloc(ret->data, len + 4);
if (!new_data) {
ASN1err(ASN1_F_BN_TO_ASN1_ENUMERATED, ERR_R_MALLOC_FAILURE);
goto err;
}
ret->data = new_data;
}
ret->length = BN_bn2bin(bn, ret->data);
return (ret);
err:
if (ret != ai)
ASN1_ENUMERATED_free(ret);
return (NULL);
}
BIGNUM *ASN1_ENUMERATED_to_BN(ASN1_ENUMERATED *ai, BIGNUM *bn)
{
BIGNUM *ret;
if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL)
ASN1err(ASN1_F_ASN1_ENUMERATED_TO_BN, ASN1_R_BN_LIB);
else if (ai->type == V_ASN1_NEG_ENUMERATED)
BN_set_negative(ret, 1);
return (ret);
}

View file

@ -58,6 +58,7 @@
#include <stdio.h>
#include "internal/cryptlib.h"
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/bn.h>
#include "asn1_locl.h"
@ -88,10 +89,11 @@ int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
}
/*-
* This converts an ASN1 INTEGER into its content encoding.
* This converts a big endian buffer and sign into its content encoding.
* This is used for INTEGER and ENUMERATED types.
* The internal representation is an ASN1_STRING whose data is a big endian
* representation of the value, ignoring the sign. The sign is determined by
* the type: V_ASN1_INTEGER for positive and V_ASN1_NEG_INTEGER for negative.
* the type: if type & V_ASN1_NEG is true it is negative, otherwise positive.
*
* Positive integers are no problem: they are almost the same as the DER
* encoding, except if the first byte is >= 0x80 we need to add a zero pad.
@ -112,19 +114,19 @@ int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y)
* followed by optional zeros isn't padded.
*/
int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg,
unsigned char **pp)
{
int pad = 0, ret, i, neg;
unsigned char *p, *n, pb = 0;
int pad = 0;
size_t ret, i;
unsigned char *p, pb = 0;
const unsigned char *n;
if (a == NULL)
return (0);
neg = a->type & V_ASN1_NEG;
if (a->length == 0)
if (b == NULL || blen == 0)
ret = 1;
else {
ret = a->length;
i = a->data[0];
ret = blen;
i = b[0];
if (ret == 1 && i == 0)
neg = 0;
if (!neg && (i > 127)) {
@ -139,8 +141,8 @@ int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
* Special case: if any other bytes non zero we pad:
* otherwise we don't.
*/
for (i = 1; i < a->length; i++)
if (a->data[i]) {
for (i = 1; i < blen; i++)
if (b[i]) {
pad = 1;
pb = 0xFF;
break;
@ -150,20 +152,20 @@ int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
ret += pad;
}
if (pp == NULL)
return (ret);
return ret;
p = *pp;
if (pad)
*(p++) = pb;
if (a->length == 0)
if (blen == 0)
*(p++) = 0;
else if (!neg)
memcpy(p, a->data, (unsigned int)a->length);
memcpy(p, b, blen);
else {
/* Begin at the end of the encoding */
n = a->data + a->length - 1;
p += a->length - 1;
i = a->length;
n = b + blen - 1;
p += blen - 1;
i = blen;
/* Copy zeros to destination as long as source is zero */
while (!*n && i > 1) {
*(p--) = 0;
@ -179,97 +181,241 @@ int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
}
*pp += ret;
return (ret);
return ret;
}
/* Convert just ASN1 INTEGER content octets to ASN1_INTEGER structure */
/*
* convert content octets into a big endian buffer. Returns the length
* of buffer or 0 on error: for malformed INTEGER. If output bufer is
* NULL just return length.
*/
static size_t c2i_ibuf(unsigned char *b, int *pneg,
const unsigned char *p, size_t plen)
{
size_t i;
int neg, pad;
/* Zero content length is illegal */
if (plen == 0) {
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT);
return 0;
}
neg = p[0] & 0x80;
if (pneg)
*pneg = neg;
/* Handle common case where length is 1 octet separately */
if (plen == 1) {
if (b) {
if (neg)
b[0] = (p[0] ^ 0xFF) + 1;
else
b[0] = p[0];
}
return 1;
}
if (p[0] == 0 || p[0] == 0xFF)
pad = 1;
else
pad = 0;
/* reject illegal padding: first two octets MSB can't match */
if (pad && (neg == (p[1] & 0x80))) {
ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING);
return 0;
}
/* If positive just copy across */
if (neg == 0) {
if (b)
memcpy(b, p + pad, plen - pad);
return plen - pad;
}
if (neg && pad) {
/* check is any following octets are non zero */
for (i = 1; i < plen; i++) {
if (p[i] != 0)
break;
}
/* if all bytes are zero handle as special case */
if (i == plen) {
if (b) {
b[0] = 1;
memset(b + 1, 0, plen - 1);
}
return plen;
}
}
plen -= pad;
/* Must be negative: calculate twos complement */
if (b) {
const unsigned char *from = p + plen - 1 + pad;
unsigned char *to = b + plen - 1;
i = plen;
while (*from == 0 && i) {
*to-- = 0;
i--;
from--;
}
*to-- = (*from-- ^ 0xff) + 1;
OPENSSL_assert(i != 0);
i--;
for (; i > 0; i--)
*to-- = *from-- ^ 0xff;
}
return plen;
}
int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp)
{
return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp);
}
/* Convert big endian buffer into uint64_t, return 0 on error */
static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen)
{
size_t i;
if (blen > sizeof(*pr)) {
ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE);
return 0;
}
*pr = 0;
if (b == NULL)
return 0;
for (i = 0; i < blen; i++) {
*pr <<= 8;
*pr |= b[i];
}
return 1;
}
static size_t asn1_put_uint64(unsigned char *b, uint64_t r)
{
if (r >= 0x100) {
unsigned char *p;
uint64_t rtmp = r;
size_t i = 0;
/* Work out how many bytes we need */
while (rtmp) {
rtmp >>= 8;
i++;
}
/* Copy from end to beginning */
p = b + i - 1;
do {
*p-- = r & 0xFF;
r >>= 8;
} while (p >= b);
return i;
}
b[0] = (unsigned char)r;
return 1;
}
/*
* Absolute value of INT64_MIN: we can't just use -INT64_MIN as it produces
* overflow warnings.
*/
#define ABS_INT64_MIN \
((uint64_t)INT64_MAX + (uint64_t)(-(INT64_MIN + INT64_MAX)))
/* signed version of asn1_get_uint64 */
static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen,
int neg)
{
uint64_t r;
if (asn1_get_uint64(&r, b, blen) == 0)
return 0;
if (neg) {
if (r > ABS_INT64_MIN) {
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL);
return 0;
}
*pr = (int64_t)-r;
} else {
if (r > INT64_MAX) {
ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE);
return 0;
}
*pr = (int64_t)r;
}
return 1;
}
/* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */
ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp,
long len)
{
ASN1_INTEGER *ret = NULL;
const unsigned char *p, *pend;
unsigned char *to, *s;
int i;
size_t r;
int neg;
r = c2i_ibuf(NULL, NULL, *pp, len);
if (r == 0)
return NULL;
if ((a == NULL) || ((*a) == NULL)) {
if ((ret = ASN1_INTEGER_new()) == NULL)
return (NULL);
ret = ASN1_INTEGER_new();
if (ret == NULL)
return NULL;
ret->type = V_ASN1_INTEGER;
} else
ret = (*a);
ret = *a;
p = *pp;
pend = p + len;
/*
* We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies
* a missing NULL parameter.
*/
s = OPENSSL_malloc((int)len + 1);
if (s == NULL) {
i = ERR_R_MALLOC_FAILURE;
if (ASN1_STRING_set(ret, NULL, r) == 0)
goto err;
}
to = s;
if (!len) {
/*
* Strictly speaking this is an illegal INTEGER but we tolerate it.
*/
ret->type = V_ASN1_INTEGER;
} else if (*p & 0x80) { /* a negative number */
ret->type = V_ASN1_NEG_INTEGER;
if ((*p == 0xff) && (len != 1)) {
p++;
len--;
}
i = len;
p += i - 1;
to += i - 1;
while ((!*p) && i) {
*(to--) = 0;
i--;
p--;
}
/*
* Special case: if all zeros then the number will be of the form FF
* followed by n zero bytes: this corresponds to 1 followed by n zero
* bytes. We've already written n zeros so we just append an extra
* one and set the first byte to a 1. This is treated separately
* because it is the only case where the number of bytes is larger
* than len.
*/
if (!i) {
*s = 1;
s[len] = 0;
len++;
} else {
*(to--) = (*(p--) ^ 0xff) + 1;
i--;
for (; i > 0; i--)
*(to--) = *(p--) ^ 0xff;
}
} else {
ret->type = V_ASN1_INTEGER;
if ((*p == 0) && (len != 1)) {
p++;
len--;
}
memcpy(s, p, (int)len);
}
OPENSSL_free(ret->data);
ret->data = s;
ret->length = (int)len;
c2i_ibuf(ret->data, &neg, *pp, len);
if (neg)
ret->type |= V_ASN1_NEG;
*pp += len;
if (a != NULL)
(*a) = ret;
*pp = pend;
return (ret);
return ret;
err:
ASN1err(ASN1_F_C2I_ASN1_INTEGER, i);
ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
if ((a == NULL) || (*a != ret))
ASN1_INTEGER_free(ret);
return (NULL);
return NULL;
}
static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype)
{
if (a == NULL) {
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
if ((a->type & ~V_ASN1_NEG) != itype) {
ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE);
return 0;
}
return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG);
}
static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype)
{
unsigned char tbuf[sizeof(r)];
size_t l;
a->type = itype;
if (r < 0) {
l = asn1_put_uint64(tbuf, -r);
a->type |= V_ASN1_NEG;
} else {
l = asn1_put_uint64(tbuf, r);
a->type &= ~V_ASN1_NEG;
}
if (l == 0)
return 0;
return ASN1_STRING_set(a, tbuf, l);
}
/*
@ -340,116 +486,148 @@ ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp,
return (NULL);
}
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
{
int j, k;
unsigned int i;
unsigned char buf[sizeof(long) + 1];
if (a->length < (int)(sizeof(long) + 1)) {
OPENSSL_free(a->data);
if ((a->data = OPENSSL_malloc(sizeof(long) + 1)) != NULL)
memset(a->data, 0, sizeof(long) + 1);
}
if (a->data == NULL) {
ASN1err(ASN1_F_ASN1_INTEGER_SET, ERR_R_MALLOC_FAILURE);
return (0);
}
if (v < 0) {
v = -v;
a->type = V_ASN1_NEG_INTEGER;
} else
a->type = V_ASN1_INTEGER;
for (i = 0; i < sizeof(long); i++) {
if (v == 0)
break;
buf[i] = (int)v & 0xff;
v >>= 8;
}
j = 0;
for (k = i - 1; k >= 0; k--)
a->data[j++] = buf[k];
a->length = j;
return (1);
}
long ASN1_INTEGER_get(const ASN1_INTEGER *a)
{
int neg = 0, i;
long r = 0;
if (a == NULL)
return (0L);
i = a->type;
if (i == V_ASN1_NEG_INTEGER)
neg = 1;
else if (i != V_ASN1_INTEGER)
return -1;
if (a->length > (int)sizeof(long)) {
/* hmm... a bit ugly, return all ones */
return -1;
}
if (a->data == NULL)
return 0;
for (i = 0; i < a->length; i++) {
r <<= 8;
r |= (unsigned char)a->data[i];
}
if (neg)
r = -r;
return (r);
}
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai,
int atype)
{
ASN1_INTEGER *ret;
int len, j;
int len;
if (ai == NULL)
ret = ASN1_INTEGER_new();
else
if (ai == NULL) {
ret = ASN1_STRING_type_new(atype);
} else {
ret = ai;
ret->type = atype;
}
if (ret == NULL) {
ASN1err(ASN1_F_BN_TO_ASN1_INTEGER, ERR_R_NESTED_ASN1_ERROR);
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR);
goto err;
}
if (BN_is_negative(bn) && !BN_is_zero(bn))
ret->type = V_ASN1_NEG_INTEGER;
else
ret->type = V_ASN1_INTEGER;
j = BN_num_bits(bn);
len = ((j == 0) ? 0 : ((j / 8) + 1));
if (ret->length < len + 4) {
unsigned char *new_data = OPENSSL_realloc(ret->data, len + 4);
if (!new_data) {
ASN1err(ASN1_F_BN_TO_ASN1_INTEGER, ERR_R_MALLOC_FAILURE);
goto err;
}
ret->data = new_data;
ret->type |= V_ASN1_NEG_INTEGER;
len = BN_num_bytes(bn);
if (len == 0)
len = 1;
if (ASN1_STRING_set(ret, NULL, len) == 0) {
ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE);
goto err;
}
ret->length = BN_bn2bin(bn, ret->data);
/* Correct zero case */
if (!ret->length) {
if (BN_is_zero(bn))
ret->data[0] = 0;
ret->length = 1;
}
return (ret);
else
len = BN_bn2bin(bn, ret->data);
ret->length = len;
return ret;
err:
if (ret != ai)
ASN1_INTEGER_free(ret);
return (NULL);
}
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn,
int itype)
{
BIGNUM *ret;
if ((ret = BN_bin2bn(ai->data, ai->length, bn)) == NULL)
ASN1err(ASN1_F_ASN1_INTEGER_TO_BN, ASN1_R_BN_LIB);
else if (ai->type == V_ASN1_NEG_INTEGER)
if ((ai->type & ~V_ASN1_NEG) != itype) {
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE);
return NULL;
}
ret = BN_bin2bn(ai->data, ai->length, bn);
if (ret == 0) {
ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB);
return NULL;
}
if (ai->type & V_ASN1_NEG)
BN_set_negative(ret, 1);
return (ret);
return ret;
}
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a)
{
return asn1_string_get_int64(pr, a, V_ASN1_INTEGER);
}
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r)
{
return asn1_string_set_int64(a, r, V_ASN1_INTEGER);
}
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v)
{
return ASN1_INTEGER_set_int64(a, v);
}
long ASN1_INTEGER_get(const ASN1_INTEGER *a)
{
int i;
int64_t r;
if (a == NULL)
return 0;
i = ASN1_INTEGER_get_int64(&r, a);
if (i == 0)
return -1;
if (r > LONG_MAX || r < LONG_MIN)
return -1;
return (long)r;
}
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai)
{
return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER);
}
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn)
{
return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER);
}
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a)
{
return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED);
}
int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r)
{
return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED);
}
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v)
{
return ASN1_ENUMERATED_set_int64(a, v);
}
long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a)
{
int i;
int64_t r;
if (a == NULL)
return 0;
if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED)
return -1;
if (a->length > (int)sizeof(long))
return 0xffffffffL;
i = ASN1_ENUMERATED_get_int64(&r, a);
if (i == 0)
return -1;
if (r > LONG_MAX || r < LONG_MIN)
return -1;
return (long)r;
}
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai)
{
return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED);
}
BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn)
{
return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED);
}

View file

@ -1,6 +1,6 @@
/* crypto/asn1/asn1_err.c */
/* ====================================================================
* Copyright (c) 1999-2014 The OpenSSL Project. All rights reserved.
* Copyright (c) 1999-2015 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
@ -93,7 +93,9 @@ static ERR_STRING_DATA ASN1_str_functs[] = {
{ERR_FUNC(ASN1_F_ASN1_GENERALIZEDTIME_ADJ), "ASN1_GENERALIZEDTIME_adj"},
{ERR_FUNC(ASN1_F_ASN1_GENERALIZEDTIME_SET), "ASN1_GENERALIZEDTIME_set"},
{ERR_FUNC(ASN1_F_ASN1_GENERATE_V3), "ASN1_generate_v3"},
{ERR_FUNC(ASN1_F_ASN1_GET_INT64), "ASN1_GET_INT64"},
{ERR_FUNC(ASN1_F_ASN1_GET_OBJECT), "ASN1_get_object"},
{ERR_FUNC(ASN1_F_ASN1_GET_UINT64), "ASN1_GET_UINT64"},
{ERR_FUNC(ASN1_F_ASN1_HEADER_NEW), "ASN1_HEADER_NEW"},
{ERR_FUNC(ASN1_F_ASN1_I2D_BIO), "ASN1_i2d_bio"},
{ERR_FUNC(ASN1_F_ASN1_I2D_FP), "ASN1_i2d_fp"},
@ -101,8 +103,8 @@ static ERR_STRING_DATA ASN1_str_functs[] = {
{ERR_FUNC(ASN1_F_ASN1_INTEGER_TO_BN), "ASN1_INTEGER_to_BN"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_D2I_FP), "ASN1_item_d2i_fp"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_DUP), "ASN1_item_dup"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_EX_NEW), "ASN1_ITEM_EX_NEW"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_EX_D2I), "ASN1_ITEM_EX_D2I"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_EX_NEW), "ASN1_ITEM_EX_NEW"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_I2D_BIO), "ASN1_item_i2d_bio"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_I2D_FP), "ASN1_item_i2d_fp"},
{ERR_FUNC(ASN1_F_ASN1_ITEM_PACK), "ASN1_item_pack"},
@ -121,8 +123,10 @@ static ERR_STRING_DATA ASN1_str_functs[] = {
{ERR_FUNC(ASN1_F_ASN1_SEQ_UNPACK), "ASN1_seq_unpack"},
{ERR_FUNC(ASN1_F_ASN1_SIGN), "ASN1_sign"},
{ERR_FUNC(ASN1_F_ASN1_STR2TYPE), "ASN1_STR2TYPE"},
{ERR_FUNC(ASN1_F_ASN1_STRING_GET_INT64), "ASN1_STRING_GET_INT64"},
{ERR_FUNC(ASN1_F_ASN1_STRING_SET), "ASN1_STRING_set"},
{ERR_FUNC(ASN1_F_ASN1_STRING_TABLE_ADD), "ASN1_STRING_TABLE_add"},
{ERR_FUNC(ASN1_F_ASN1_STRING_TO_BN), "ASN1_STRING_TO_BN"},
{ERR_FUNC(ASN1_F_ASN1_STRING_TYPE_NEW), "ASN1_STRING_type_new"},
{ERR_FUNC(ASN1_F_ASN1_TEMPLATE_EX_D2I), "ASN1_TEMPLATE_EX_D2I"},
{ERR_FUNC(ASN1_F_ASN1_TEMPLATE_NEW), "ASN1_TEMPLATE_NEW"},
@ -142,9 +146,11 @@ static ERR_STRING_DATA ASN1_str_functs[] = {
{ERR_FUNC(ASN1_F_BITSTR_CB), "BITSTR_CB"},
{ERR_FUNC(ASN1_F_BN_TO_ASN1_ENUMERATED), "BN_to_ASN1_ENUMERATED"},
{ERR_FUNC(ASN1_F_BN_TO_ASN1_INTEGER), "BN_to_ASN1_INTEGER"},
{ERR_FUNC(ASN1_F_BN_TO_ASN1_STRING), "BN_TO_ASN1_STRING"},
{ERR_FUNC(ASN1_F_C2I_ASN1_BIT_STRING), "c2i_ASN1_BIT_STRING"},
{ERR_FUNC(ASN1_F_C2I_ASN1_INTEGER), "c2i_ASN1_INTEGER"},
{ERR_FUNC(ASN1_F_C2I_ASN1_OBJECT), "c2i_ASN1_OBJECT"},
{ERR_FUNC(ASN1_F_C2I_IBUF), "C2I_IBUF"},
{ERR_FUNC(ASN1_F_COLLECT_DATA), "COLLECT_DATA"},
{ERR_FUNC(ASN1_F_D2I_ASN1_BIT_STRING), "D2I_ASN1_BIT_STRING"},
{ERR_FUNC(ASN1_F_D2I_ASN1_BOOLEAN), "d2i_ASN1_BOOLEAN"},
@ -252,8 +258,10 @@ static ERR_STRING_DATA ASN1_str_reasons[] = {
{ERR_REASON(ASN1_R_ILLEGAL_OPTIONAL_ANY), "illegal optional any"},
{ERR_REASON(ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE),
"illegal options on item template"},
{ERR_REASON(ASN1_R_ILLEGAL_PADDING), "illegal padding"},
{ERR_REASON(ASN1_R_ILLEGAL_TAGGED_ANY), "illegal tagged any"},
{ERR_REASON(ASN1_R_ILLEGAL_TIME_VALUE), "illegal time value"},
{ERR_REASON(ASN1_R_ILLEGAL_ZERO_CONTENT), "illegal zero content"},
{ERR_REASON(ASN1_R_INTEGER_NOT_ASCII_FORMAT), "integer not ascii format"},
{ERR_REASON(ASN1_R_INTEGER_TOO_LARGE_FOR_LONG),
"integer too large for long"},
@ -314,7 +322,9 @@ static ERR_STRING_DATA ASN1_str_reasons[] = {
{ERR_REASON(ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD),
"the asn1 object identifier is not known for this md"},
{ERR_REASON(ASN1_R_TIME_NOT_ASCII_FORMAT), "time not ascii format"},
{ERR_REASON(ASN1_R_TOO_LARGE), "too large"},
{ERR_REASON(ASN1_R_TOO_LONG), "too long"},
{ERR_REASON(ASN1_R_TOO_SMALL), "too small"},
{ERR_REASON(ASN1_R_TYPE_NOT_CONSTRUCTED), "type not constructed"},
{ERR_REASON(ASN1_R_TYPE_NOT_PRIMITIVE), "type not primitive"},
{ERR_REASON(ASN1_R_UNABLE_TO_DECODE_RSA_KEY), "unable to decode rsa key"},
@ -339,6 +349,7 @@ static ERR_STRING_DATA ASN1_str_reasons[] = {
{ERR_REASON(ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE),
"unsupported public key type"},
{ERR_REASON(ASN1_R_UNSUPPORTED_TYPE), "unsupported type"},
{ERR_REASON(ASN1_R_WRONG_INTEGER_TYPE), "wrong integer type"},
{ERR_REASON(ASN1_R_WRONG_PUBLIC_KEY_TYPE), "wrong public key type"},
{ERR_REASON(ASN1_R_WRONG_TAG), "wrong tag"},
{ERR_REASON(ASN1_R_WRONG_TYPE), "wrong type"},

View file

@ -1,193 +0,0 @@
/* crypto/asn1/f_enum.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include "internal/cryptlib.h"
#include <openssl/buffer.h>
#include <openssl/asn1.h>
/* Based on a_int.c: equivalent ENUMERATED functions */
int i2a_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *a)
{
int i, n = 0;
static const char *h = "0123456789ABCDEF";
char buf[2];
if (a == NULL)
return (0);
if (a->length == 0) {
if (BIO_write(bp, "00", 2) != 2)
goto err;
n = 2;
} else {
for (i = 0; i < a->length; i++) {
if ((i != 0) && (i % 35 == 0)) {
if (BIO_write(bp, "\\\n", 2) != 2)
goto err;
n += 2;
}
buf[0] = h[((unsigned char)a->data[i] >> 4) & 0x0f];
buf[1] = h[((unsigned char)a->data[i]) & 0x0f];
if (BIO_write(bp, buf, 2) != 2)
goto err;
n += 2;
}
}
return (n);
err:
return (-1);
}
int a2i_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *bs, char *buf, int size)
{
int i, j, k, m, n, again, bufsize;
unsigned char *s = NULL, *sp;
unsigned char *bufp;
int num = 0, slen = 0, first = 1;
bs->type = V_ASN1_ENUMERATED;
bufsize = BIO_gets(bp, buf, size);
for (;;) {
if (bufsize < 1)
goto err;
i = bufsize;
if (buf[i - 1] == '\n')
buf[--i] = '\0';
if (i == 0)
goto err;
if (buf[i - 1] == '\r')
buf[--i] = '\0';
if (i == 0)
goto err;
again = (buf[i - 1] == '\\');
for (j = 0; j < i; j++) {
if (!(((buf[j] >= '0') && (buf[j] <= '9')) ||
((buf[j] >= 'a') && (buf[j] <= 'f')) ||
((buf[j] >= 'A') && (buf[j] <= 'F')))) {
i = j;
break;
}
}
buf[i] = '\0';
/*
* We have now cleared all the crap off the end of the line
*/
if (i < 2)
goto err;
bufp = (unsigned char *)buf;
if (first) {
first = 0;
if ((bufp[0] == '0') && (buf[1] == '0')) {
bufp += 2;
i -= 2;
}
}
k = 0;
i -= again;
if (i % 2 != 0) {
ASN1err(ASN1_F_A2I_ASN1_ENUMERATED, ASN1_R_ODD_NUMBER_OF_CHARS);
return 0;
}
i /= 2;
if (num + i > slen) {
sp = OPENSSL_realloc(s, (unsigned int)num + i * 2);
if (sp == NULL) {
ASN1err(ASN1_F_A2I_ASN1_ENUMERATED, ERR_R_MALLOC_FAILURE);
OPENSSL_free(s);
return 0;
}
s = sp;
slen = num + i * 2;
}
for (j = 0; j < i; j++, k += 2) {
for (n = 0; n < 2; n++) {
m = bufp[k + n];
if ((m >= '0') && (m <= '9'))
m -= '0';
else if ((m >= 'a') && (m <= 'f'))
m = m - 'a' + 10;
else if ((m >= 'A') && (m <= 'F'))
m = m - 'A' + 10;
else {
ASN1err(ASN1_F_A2I_ASN1_ENUMERATED,
ASN1_R_NON_HEX_CHARACTERS);
return 0;
}
s[num + j] <<= 4;
s[num + j] |= m;
}
}
num += i;
if (again)
bufsize = BIO_gets(bp, buf, size);
else
break;
}
bs->length = num;
bs->data = s;
return 1;
err:
ASN1err(ASN1_F_A2I_ASN1_ENUMERATED, ASN1_R_SHORT_LINE);
return 0;
}

View file

@ -204,3 +204,16 @@ int a2i_ASN1_INTEGER(BIO *bp, ASN1_INTEGER *bs, char *buf, int size)
ASN1err(ASN1_F_A2I_ASN1_INTEGER, ASN1_R_SHORT_LINE);
return 0;
}
int i2a_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *a)
{
return i2a_ASN1_INTEGER(bp, a);
}
int a2i_ASN1_ENUMERATED(BIO *bp, ASN1_ENUMERATED *bs, char *buf, int size)
{
int rv = a2i_ASN1_INTEGER(bp, bs, buf, size);
if (rv == 1)
bs->type = V_ASN1_INTEGER | (bs->type & V_ASN1_NEG);
return rv;
}

View file

@ -0,0 +1,112 @@
=pod
=head1 NAME
ASN1_INTEGER_get_int64, ASN1_INTEGER_get, ASN1_INTEGER_set_int64, ASN1_INTEGER_set, BN_to_ASN1_INTEGER, ASN1_INTEGER_to_BN, ASN1_ENUMERATED_get_int64, ASN1_ENUMERATED_get, ASN1_ENUMERATED_set_int64, ASN1_ENUMERATED_set, BN_to_ASN1_ENUMERATED, ASN1_ENUMERATED_to_BN, - ASN.1 INTEGER and ENUMERATED utilities
=head1 SYNOPSIS
#include <openssl/asn1.h>
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a);
int ASN1_INTEGER_get(ASN1_INTEGER *a, long v);
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r);
long ASN1_INTEGER_set(const ASN1_INTEGER *a);
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai);
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn);
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_INTEGER *a);
long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a);
int ASN1_ENUMERATED_set_int64(ASN1_INTEGER *a, int64_t r);
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v);
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(BIGNUM *bn, ASN1_ENUMERATED *ai);
BIGNUM *ASN1_ENUMERATED_to_BN(ASN1_ENUMERATED *ai, BIGNUM *bn);
=head1 DESCRIPTION
These functions convert to and from B<ASN1_INTEGER> and B<ASN1_ENUMERATED>
structures.
ASN1_INTEGER_get_int64() converts an B<ASN1_INTEGER> into an B<int64_t> type
If successful it returns 1 and sets B<*pr> to the value of B<a>. If it fails
(due to invalid type or the value being too big to fit into an B<int64_t> type)
it returns 0.
ASN1_INTEGER_get() also returns the value of B<a> but it returns 0 if B<a> is
NULL and -1 on error (which is ambiguous because -1 is a legitimate value for
an B<ASN1_INTEGER>). New applications should use ASN1_INTEGER_get_int64()
instead.
ASN1_INTEGER_set_int64() sets the value of B<ASN1_INTEGER> B<a> to the
B<int64_t> value B<r>.
ASN1_INTEGER_set() sets the value of B<ASN1_INTEGER> B<a> to the B<long> value
B<v>.
BN_to_ASN1_INTEGER() converts B<BIGNUM> B<bn> to an B<ASN1_INTEGER>. If B<ai>
is NULL a new B<ASN1_INTEGER> structure is returned. If B<ai> is not NULL then
the existing structure will be used instead.
ASN1_INTEGER_to_BN() converts ASN1_INTEGER B<ai> into a B<BIGNUM>. If B<bn> is
NULL a new B<BIGNUM> structure is returned. If B<bn> is not NULL then the
existing structure will be used instead.
ASN1_ENUMERATED_get_int64(), ASN1_ENUMERATED_set_int64(),
ASN1_ENUMERATED_set(), BN_to_ASN1_ENUMERATED() and ASN1_ENUMERATED_to_BN()
behave in an identical way to their ASN1_INTEGER counterparts except they
operate on an B<ASN1_ENUMERATED> value.
ASN1_ENUMERATED_get() returns the value of B<a> in a similar way to
ASN1_INTEGER_get() but it returns B<0xffffffffL> if the value of B<a> will not
fit in a long type. New applications should use ASN1_ENUMERATED_get_int64()
instead.
=head1 NOTES
In general an B<ASN1_INTEGER> or B<ASN1_ENUMERATED> type can contain an
integer of almost arbitrary size and so cannot always be represented by a C
B<int64_t> type. However in many cases (for example version numbers) they
represent small integers which can be more easily manipulated if converted to
an appropriate C integer type.
=head1 BUGS
The ambigious return values of ASN1_INTEGER_get() and ASN1_ENUMERATED_get()
mean these functions should be avoided if possible. They are retained for
compatibility. Normally the ambigious return values are not legitimate
values for the fields they represent.
=head1 RETURN VALUES
ASN1_INTEGER_set_int64(), ASN1_INTEGER_set(), ASN1_ENUMERATED_set_int64() and
ASN1_ENUMERATED_set() return 1 for success and 0 for failure. They will only
fail if a memory allocation error occurs.
ASN1_INTEGER_get_int64() and ASN1_ENUMERATED_get_int64() return 1 for success
and 0 for failure. They will fail if the passed type is incorrect (this will
only happen if there is a programming error) or if the value exceeds the range
of an B<int64_t> type.
BN_to_ASN1_INTEGER() and BN_to_ASN1_ENUMERATED() return an B<ASN1_INTEGER> or
B<ASN1_ENUMERATED> structure respectively or NULL if an error occurs. They will
only fail due to a memory allocation error.
ASN1_INTEGER_to_BN() and ASN1_ENUMERATED_to_BN() return a B<BIGNUM> structure
of NULL if an error occurs. They can fail if the pased type is incorrect
(due to programming error) or due to a memory allocation failure.
=head1 SEE ALSO
L<ERR_get_error(3)|ERR_get_error(3)>
=head1 HISTORY
ASN1_INTEGER_set_int64(), ASN1_INTEGER_get_int64(),
ASN1_ENUMERATED_set_int64() and ASN1_ENUMERATED_get_int64()
were added to OpenSSL 1.1.0.
=cut

View file

@ -677,15 +677,21 @@ int a2d_ASN1_OBJECT(unsigned char *out, int olen, const char *buf, int num);
ASN1_OBJECT *ASN1_OBJECT_create(int nid, unsigned char *data, int len,
const char *sn, const char *ln);
int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a);
int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r);
int ASN1_INTEGER_set(ASN1_INTEGER *a, long v);
long ASN1_INTEGER_get(const ASN1_INTEGER *a);
ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai);
BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn);
int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a);
int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r);
int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v);
long ASN1_ENUMERATED_get(ASN1_ENUMERATED *a);
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(BIGNUM *bn, ASN1_ENUMERATED *ai);
BIGNUM *ASN1_ENUMERATED_to_BN(ASN1_ENUMERATED *ai, BIGNUM *bn);
ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai);
BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn);
/* General */
/* given a string, return the correct type, max is the maximum length */
@ -930,7 +936,9 @@ void ERR_load_ASN1_strings(void);
# define ASN1_F_ASN1_GENERALIZEDTIME_ADJ 216
# define ASN1_F_ASN1_GENERALIZEDTIME_SET 185
# define ASN1_F_ASN1_GENERATE_V3 178
# define ASN1_F_ASN1_GET_INT64 224
# define ASN1_F_ASN1_GET_OBJECT 114
# define ASN1_F_ASN1_GET_UINT64 225
# define ASN1_F_ASN1_HEADER_NEW 115
# define ASN1_F_ASN1_I2D_BIO 116
# define ASN1_F_ASN1_I2D_FP 117
@ -938,8 +946,8 @@ void ERR_load_ASN1_strings(void);
# define ASN1_F_ASN1_INTEGER_TO_BN 119
# define ASN1_F_ASN1_ITEM_D2I_FP 206
# define ASN1_F_ASN1_ITEM_DUP 191
# define ASN1_F_ASN1_ITEM_EX_NEW 121
# define ASN1_F_ASN1_ITEM_EX_D2I 120
# define ASN1_F_ASN1_ITEM_EX_NEW 121
# define ASN1_F_ASN1_ITEM_I2D_BIO 192
# define ASN1_F_ASN1_ITEM_I2D_FP 193
# define ASN1_F_ASN1_ITEM_PACK 198
@ -958,8 +966,10 @@ void ERR_load_ASN1_strings(void);
# define ASN1_F_ASN1_SEQ_UNPACK 127
# define ASN1_F_ASN1_SIGN 128
# define ASN1_F_ASN1_STR2TYPE 179
# define ASN1_F_ASN1_STRING_GET_INT64 227
# define ASN1_F_ASN1_STRING_SET 186
# define ASN1_F_ASN1_STRING_TABLE_ADD 129
# define ASN1_F_ASN1_STRING_TO_BN 228
# define ASN1_F_ASN1_STRING_TYPE_NEW 130
# define ASN1_F_ASN1_TEMPLATE_EX_D2I 132
# define ASN1_F_ASN1_TEMPLATE_NEW 133
@ -978,9 +988,11 @@ void ERR_load_ASN1_strings(void);
# define ASN1_F_BITSTR_CB 180
# define ASN1_F_BN_TO_ASN1_ENUMERATED 138
# define ASN1_F_BN_TO_ASN1_INTEGER 139
# define ASN1_F_BN_TO_ASN1_STRING 229
# define ASN1_F_C2I_ASN1_BIT_STRING 189
# define ASN1_F_C2I_ASN1_INTEGER 194
# define ASN1_F_C2I_ASN1_OBJECT 196
# define ASN1_F_C2I_IBUF 226
# define ASN1_F_COLLECT_DATA 140
# define ASN1_F_D2I_ASN1_BIT_STRING 141
# define ASN1_F_D2I_ASN1_BOOLEAN 142
@ -1079,8 +1091,10 @@ void ERR_load_ASN1_strings(void);
# define ASN1_R_ILLEGAL_OBJECT 183
# define ASN1_R_ILLEGAL_OPTIONAL_ANY 126
# define ASN1_R_ILLEGAL_OPTIONS_ON_ITEM_TEMPLATE 170
# define ASN1_R_ILLEGAL_PADDING 221
# define ASN1_R_ILLEGAL_TAGGED_ANY 127
# define ASN1_R_ILLEGAL_TIME_VALUE 184
# define ASN1_R_ILLEGAL_ZERO_CONTENT 222
# define ASN1_R_INTEGER_NOT_ASCII_FORMAT 185
# define ASN1_R_INTEGER_TOO_LARGE_FOR_LONG 128
# define ASN1_R_INVALID_BIT_STRING_BITS_LEFT 220
@ -1133,7 +1147,9 @@ void ERR_load_ASN1_strings(void);
# define ASN1_R_TAG_VALUE_TOO_HIGH 153
# define ASN1_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD 154
# define ASN1_R_TIME_NOT_ASCII_FORMAT 193
# define ASN1_R_TOO_LARGE 223
# define ASN1_R_TOO_LONG 155
# define ASN1_R_TOO_SMALL 224
# define ASN1_R_TYPE_NOT_CONSTRUCTED 156
# define ASN1_R_TYPE_NOT_PRIMITIVE 195
# define ASN1_R_UNABLE_TO_DECODE_RSA_KEY 157
@ -1151,6 +1167,7 @@ void ERR_load_ASN1_strings(void);
# define ASN1_R_UNSUPPORTED_ENCRYPTION_ALGORITHM 166
# define ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE 167
# define ASN1_R_UNSUPPORTED_TYPE 196
# define ASN1_R_WRONG_INTEGER_TYPE 225
# define ASN1_R_WRONG_PUBLIC_KEY_TYPE 200
# define ASN1_R_WRONG_TAG 168
# define ASN1_R_WRONG_TYPE 169