Currently, RSA code, when using no padding scheme, simply checks that input

does not contain more bytes than the RSA modulus 'n' - it does not check
that the input is strictly *less* than 'n'. Whether this should be the
case or not is open to debate - however, due to security problems with
returning miscalculated CRT results, the 'rsa_mod_exp' implementation in
rsa_eay.c now performs a public-key exponentiation to verify the CRT result
and in the event of an error will instead recalculate and return a non-CRT
(more expensive) mod_exp calculation. As the mod_exp of 'I' is equivalent
to the mod_exp of 'I mod n', and the verify result is automatically between
0 and n-1 inclusive, the verify only matches the input if 'I' was less than
'n', otherwise even a correct CRT calculation is only congruent to 'I' (ie.
they differ by a multiple of 'n'). Rather than rejecting correct
calculations and doing redundant and slower ones instead, this changes the
equality check in the verification code to a congruence check.
This commit is contained in:
Geoff Thorpe 2001-07-20 15:16:10 +00:00
parent 6b46ca135a
commit 81d1998e09

View file

@ -545,10 +545,19 @@ static int RSA_eay_mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa)
if (rsa->e && rsa->n)
{
if (!meth->bn_mod_exp(&vrfy,r0,rsa->e,rsa->n,ctx,NULL)) goto err;
if (BN_cmp(I, &vrfy) != 0)
{
/* If 'I' was greater than (or equal to) rsa->n, the operation
* will be equivalent to using 'I mod n'. However, the result of
* the verify will *always* be less than 'n' so we don't check
* for absolute equality, just congruency. */
if (!BN_sub(&vrfy, &vrfy, I)) goto err;
if (!BN_mod(&vrfy, &vrfy, rsa->n, ctx)) goto err;
if (vrfy.neg)
if (!BN_add(&vrfy, &vrfy, rsa->n)) goto err;
if (!BN_is_zero(&vrfy))
/* 'I' and 'vrfy' aren't congruent mod n. Don't leak
* miscalculated CRT output, just do a raw (slower)
* mod_exp and return that instead. */
if (!meth->bn_mod_exp(r0,I,rsa->d,rsa->n,ctx,NULL)) goto err;
}
}
ret=1;
err: