bn/bn_{div|shift}.c: introduce fixed-top interfaces.
Fixed-top interfaces tolerate zero-padded inputs and facilitate
constant-time-ness. bn_div_fixed_top tolerates zero-padded dividend,
but not divisor. It's argued that divisor's length is public even
when value is secret.
[extended tests]
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7589)
(cherry picked from commit 3a4a88f436
)
This commit is contained in:
parent
a7e8ab41fd
commit
8df98cd988
3 changed files with 241 additions and 165 deletions
|
@ -7,6 +7,7 @@
|
|||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include <openssl/bn.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include "bn_lcl.h"
|
||||
|
@ -137,6 +138,26 @@ static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
|
|||
# endif
|
||||
# endif
|
||||
|
||||
static int bn_left_align(BIGNUM *num)
|
||||
{
|
||||
BN_ULONG *d = num->d, n, m, rmask;
|
||||
int top = num->top;
|
||||
int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
|
||||
|
||||
lshift = BN_BITS2 - rshift;
|
||||
rshift %= BN_BITS2; /* say no to undefined behaviour */
|
||||
rmask = (BN_ULONG)0 - rshift; /* rmask = 0 - (rshift != 0) */
|
||||
rmask |= rmask >> 8;
|
||||
|
||||
for (i = 0, m = 0; i < top; i++) {
|
||||
n = d[i];
|
||||
d[i] = ((n << lshift) | m) & BN_MASK2;
|
||||
m = (n >> rshift) & rmask;
|
||||
}
|
||||
|
||||
return lshift;
|
||||
}
|
||||
|
||||
# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
|
||||
&& !defined(PEDANTIC) && !defined(BN_DIV3W)
|
||||
# if defined(__GNUC__) && __GNUC__>=2
|
||||
|
@ -188,56 +209,74 @@ static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
|
|||
int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
||||
BN_CTX *ctx)
|
||||
{
|
||||
int norm_shift, i, j, loop;
|
||||
BIGNUM *tmp, wnum, *snum, *sdiv, *res;
|
||||
BN_ULONG *resp, *wnump;
|
||||
BN_ULONG d0, d1;
|
||||
int num_n, div_n;
|
||||
int no_branch = 0;
|
||||
|
||||
/*
|
||||
* Invalid zero-padding would have particularly bad consequences so don't
|
||||
* just rely on bn_check_top() here (bn_check_top() works only for
|
||||
* BN_DEBUG builds)
|
||||
*/
|
||||
if ((num->top > 0 && num->d[num->top - 1] == 0) ||
|
||||
(divisor->top > 0 && divisor->d[divisor->top - 1] == 0)) {
|
||||
BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED);
|
||||
return 0;
|
||||
}
|
||||
|
||||
bn_check_top(num);
|
||||
bn_check_top(divisor);
|
||||
|
||||
if ((BN_get_flags(num, BN_FLG_CONSTTIME) != 0)
|
||||
|| (BN_get_flags(divisor, BN_FLG_CONSTTIME) != 0)) {
|
||||
no_branch = 1;
|
||||
}
|
||||
|
||||
bn_check_top(dv);
|
||||
bn_check_top(rm);
|
||||
/*- bn_check_top(num); *//*
|
||||
* 'num' has been checked already
|
||||
*/
|
||||
/*- bn_check_top(divisor); *//*
|
||||
* 'divisor' has been checked already
|
||||
*/
|
||||
int ret;
|
||||
|
||||
if (BN_is_zero(divisor)) {
|
||||
BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!no_branch && BN_ucmp(num, divisor) < 0) {
|
||||
if (rm != NULL) {
|
||||
if (BN_copy(rm, num) == NULL)
|
||||
/*
|
||||
* Invalid zero-padding would have particularly bad consequences so don't
|
||||
* just rely on bn_check_top() here (bn_check_top() works only for
|
||||
* BN_DEBUG builds)
|
||||
*/
|
||||
if (divisor->d[divisor->top - 1] == 0) {
|
||||
BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED);
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
|
||||
|
||||
if (ret) {
|
||||
if (dv != NULL)
|
||||
BN_zero(dv);
|
||||
return 1;
|
||||
bn_correct_top(dv);
|
||||
if (rm != NULL)
|
||||
bn_correct_top(rm);
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* It's argued that *length* of *significant* part of divisor is public.
|
||||
* Even if it's private modulus that is. Again, *length* is assumed
|
||||
* public, but not *value*. Former is likely to be pre-defined by
|
||||
* algorithm with bit granularity, though below subroutine is invariant
|
||||
* of limb length. Thanks to this assumption we can require that |divisor|
|
||||
* may not be zero-padded, yet claim this subroutine "constant-time"(*).
|
||||
* This is because zero-padded dividend, |num|, is tolerated, so that
|
||||
* caller can pass dividend of public length(*), but with smaller amount
|
||||
* of significant limbs. This naturally means that quotient, |dv|, would
|
||||
* contain correspongly less significant limbs as well, and will be zero-
|
||||
* padded accordingly. Returned remainder, |rm|, will have same bit length
|
||||
* as divisor, also zero-padded if needed. These actually leave sign bits
|
||||
* in ambiguous state. In sense that we try to avoid negative zeros, while
|
||||
* zero-padded zeros would retain sign.
|
||||
*
|
||||
* (*) "Constant-time-ness" has two pre-conditions:
|
||||
*
|
||||
* - availability of constant-time bn_div_3_words;
|
||||
* - dividend is at least as "wide" as divisor, limb-wise, zero-padded
|
||||
* if so requied, which shouldn't be a privacy problem, because
|
||||
* divisor's length is considered public;
|
||||
*/
|
||||
int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
|
||||
const BIGNUM *divisor, BN_CTX *ctx)
|
||||
{
|
||||
int norm_shift, i, j, loop;
|
||||
BIGNUM *tmp, *snum, *sdiv, *res;
|
||||
BN_ULONG *resp, *wnum, *wnumtop;
|
||||
BN_ULONG d0, d1;
|
||||
int num_n, div_n;
|
||||
|
||||
assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
|
||||
|
||||
bn_check_top(num);
|
||||
bn_check_top(divisor);
|
||||
bn_check_top(dv);
|
||||
bn_check_top(rm);
|
||||
|
||||
BN_CTX_start(ctx);
|
||||
res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
|
||||
tmp = BN_CTX_get(ctx);
|
||||
|
@ -247,112 +286,72 @@ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
|||
goto err;
|
||||
|
||||
/* First we normalise the numbers */
|
||||
norm_shift = BN_BITS2 - ((BN_num_bits(divisor)) % BN_BITS2);
|
||||
if (!(BN_lshift(sdiv, divisor, norm_shift)))
|
||||
if (!BN_copy(sdiv, divisor))
|
||||
goto err;
|
||||
norm_shift = bn_left_align(sdiv);
|
||||
sdiv->neg = 0;
|
||||
norm_shift += BN_BITS2;
|
||||
if (!(BN_lshift(snum, num, norm_shift)))
|
||||
goto err;
|
||||
snum->neg = 0;
|
||||
|
||||
if (no_branch) {
|
||||
/*
|
||||
* Since we don't know whether snum is larger than sdiv, we pad snum
|
||||
* with enough zeroes without changing its value.
|
||||
* Note that bn_lshift_fixed_top's output is always one limb longer
|
||||
* than input, even when norm_shift is zero. This means that amount of
|
||||
* inner loop iterations is invariant of dividend value, and that one
|
||||
* doesn't need to compare dividend and divisor if they were originally
|
||||
* of the same bit length.
|
||||
*/
|
||||
if (snum->top <= sdiv->top + 1) {
|
||||
if (bn_wexpand(snum, sdiv->top + 2) == NULL)
|
||||
if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
|
||||
goto err;
|
||||
for (i = snum->top; i < sdiv->top + 2; i++)
|
||||
snum->d[i] = 0;
|
||||
snum->top = sdiv->top + 2;
|
||||
} else {
|
||||
if (bn_wexpand(snum, snum->top + 1) == NULL)
|
||||
goto err;
|
||||
snum->d[snum->top] = 0;
|
||||
snum->top++;
|
||||
}
|
||||
}
|
||||
|
||||
div_n = sdiv->top;
|
||||
num_n = snum->top;
|
||||
|
||||
if (num_n <= div_n) {
|
||||
/* caller didn't pad dividend -> no constant-time guarantee... */
|
||||
if (bn_wexpand(snum, div_n + 1) == NULL)
|
||||
goto err;
|
||||
memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
|
||||
snum->top = num_n = div_n + 1;
|
||||
}
|
||||
|
||||
loop = num_n - div_n;
|
||||
/*
|
||||
* Lets setup a 'window' into snum This is the part that corresponds to
|
||||
* the current 'area' being divided
|
||||
*/
|
||||
wnum.neg = 0;
|
||||
wnum.d = &(snum->d[loop]);
|
||||
wnum.top = div_n;
|
||||
wnum.flags = BN_FLG_STATIC_DATA;
|
||||
/*
|
||||
* only needed when BN_ucmp messes up the values between top and max
|
||||
*/
|
||||
wnum.dmax = snum->dmax - loop; /* so we don't step out of bounds */
|
||||
wnum = &(snum->d[loop]);
|
||||
wnumtop = &(snum->d[num_n - 1]);
|
||||
|
||||
/* Get the top 2 words of sdiv */
|
||||
/* div_n=sdiv->top; */
|
||||
d0 = sdiv->d[div_n - 1];
|
||||
d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
|
||||
|
||||
/* pointer to the 'top' of snum */
|
||||
wnump = &(snum->d[num_n - 1]);
|
||||
|
||||
/* Setup to 'res' */
|
||||
if (!bn_wexpand(res, (loop + 1)))
|
||||
/* Setup quotient */
|
||||
if (!bn_wexpand(res, loop))
|
||||
goto err;
|
||||
res->neg = (num->neg ^ divisor->neg);
|
||||
res->top = loop - no_branch;
|
||||
resp = &(res->d[loop - 1]);
|
||||
res->top = loop;
|
||||
res->flags |= BN_FLG_FIXED_TOP;
|
||||
resp = &(res->d[loop]);
|
||||
|
||||
/* space for temp */
|
||||
if (!bn_wexpand(tmp, (div_n + 1)))
|
||||
goto err;
|
||||
|
||||
if (!no_branch) {
|
||||
if (BN_ucmp(&wnum, sdiv) >= 0) {
|
||||
/*
|
||||
* If BN_DEBUG_RAND is defined BN_ucmp changes (via bn_pollute)
|
||||
* the const bignum arguments => clean the values between top and
|
||||
* max again
|
||||
*/
|
||||
bn_clear_top2max(&wnum);
|
||||
bn_sub_words(wnum.d, wnum.d, sdiv->d, div_n);
|
||||
*resp = 1;
|
||||
} else
|
||||
res->top--;
|
||||
}
|
||||
|
||||
/* Increase the resp pointer so that we never create an invalid pointer. */
|
||||
resp++;
|
||||
|
||||
/*
|
||||
* if res->top == 0 then clear the neg value otherwise decrease the resp
|
||||
* pointer
|
||||
*/
|
||||
if (res->top == 0)
|
||||
res->neg = 0;
|
||||
else
|
||||
resp--;
|
||||
|
||||
for (i = 0; i < loop - 1; i++, wnump--) {
|
||||
for (i = 0; i < loop; i++, wnumtop--) {
|
||||
BN_ULONG q, l0;
|
||||
/*
|
||||
* the first part of the loop uses the top two words of snum and sdiv
|
||||
* to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
|
||||
*/
|
||||
# if defined(BN_DIV3W)
|
||||
q = bn_div_3_words(wnump, d1, d0);
|
||||
q = bn_div_3_words(wnumtop, d1, d0);
|
||||
# else
|
||||
BN_ULONG n0, n1, rem = 0;
|
||||
|
||||
n0 = wnump[0];
|
||||
n1 = wnump[-1];
|
||||
n0 = wnumtop[0];
|
||||
n1 = wnumtop[-1];
|
||||
if (n0 == d0)
|
||||
q = BN_MASK2;
|
||||
else { /* n0 < d0 */
|
||||
|
||||
BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
|
||||
# ifdef BN_LLONG
|
||||
BN_ULLONG t2;
|
||||
|
||||
|
@ -372,7 +371,7 @@ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
|||
t2 = (BN_ULLONG) d1 *q;
|
||||
|
||||
for (;;) {
|
||||
if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | wnump[-2]))
|
||||
if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2))
|
||||
break;
|
||||
q--;
|
||||
rem += d0;
|
||||
|
@ -405,7 +404,7 @@ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
|||
# endif
|
||||
|
||||
for (;;) {
|
||||
if ((t2h < rem) || ((t2h == rem) && (t2l <= wnump[-2])))
|
||||
if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
|
||||
break;
|
||||
q--;
|
||||
rem += d0;
|
||||
|
@ -421,12 +420,12 @@ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
|||
|
||||
l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
|
||||
tmp->d[div_n] = l0;
|
||||
wnum.d--;
|
||||
wnum--;
|
||||
/*
|
||||
* ingore top values of the bignums just sub the two BN_ULONG arrays
|
||||
* ignore top values of the bignums just sub the two BN_ULONG arrays
|
||||
* with bn_sub_words
|
||||
*/
|
||||
l0 = bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1);
|
||||
l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
|
||||
q -= l0;
|
||||
/*
|
||||
* Note: As we have considered only the leading two BN_ULONGs in
|
||||
|
@ -435,31 +434,19 @@ int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
|
|||
*/
|
||||
for (l0 = 0 - l0, j = 0; j < div_n; j++)
|
||||
tmp->d[j] = sdiv->d[j] & l0;
|
||||
l0 = bn_add_words(wnum.d, wnum.d, tmp->d, div_n);
|
||||
/*
|
||||
* we can't have an overflow here (assuming that q != 0, but
|
||||
* if q == 0 then tmp is zero anyway)
|
||||
*/
|
||||
(*wnump) += l0;
|
||||
l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
|
||||
(*wnumtop) += l0;
|
||||
assert((*wnumtop) == 0);
|
||||
|
||||
/* store part of the result */
|
||||
resp--;
|
||||
*resp = q;
|
||||
*--resp = q;
|
||||
}
|
||||
bn_correct_top(snum);
|
||||
if (rm != NULL) {
|
||||
/*
|
||||
* Keep a copy of the neg flag in num because if rm==num BN_rshift()
|
||||
* will overwrite it.
|
||||
*/
|
||||
int neg = num->neg;
|
||||
BN_rshift(rm, snum, norm_shift);
|
||||
if (!BN_is_zero(rm))
|
||||
rm->neg = neg;
|
||||
bn_check_top(rm);
|
||||
}
|
||||
if (no_branch)
|
||||
bn_correct_top(res);
|
||||
/* snum holds remainder, it's as wide as divisor */
|
||||
snum->neg = num->neg;
|
||||
snum->top = div_n;
|
||||
snum->flags |= BN_FLG_FIXED_TOP;
|
||||
if (rm != NULL)
|
||||
bn_rshift_fixed_top(rm, snum, norm_shift);
|
||||
BN_CTX_end(ctx);
|
||||
return 1;
|
||||
err:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
*
|
||||
* Licensed under the OpenSSL license (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
|
@ -7,6 +7,7 @@
|
|||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
#include <assert.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include "bn_lcl.h"
|
||||
|
||||
|
@ -82,40 +83,70 @@ int BN_rshift1(BIGNUM *r, const BIGNUM *a)
|
|||
|
||||
int BN_lshift(BIGNUM *r, const BIGNUM *a, int n)
|
||||
{
|
||||
int i, nw, lb, rb;
|
||||
BN_ULONG *t, *f;
|
||||
BN_ULONG l;
|
||||
|
||||
bn_check_top(r);
|
||||
bn_check_top(a);
|
||||
int ret;
|
||||
|
||||
if (n < 0) {
|
||||
BNerr(BN_F_BN_LSHIFT, BN_R_INVALID_SHIFT);
|
||||
return 0;
|
||||
}
|
||||
|
||||
ret = bn_lshift_fixed_top(r, a, n);
|
||||
|
||||
bn_correct_top(r);
|
||||
bn_check_top(r);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* In respect to shift factor the execution time is invariant of
|
||||
* |n % BN_BITS2|, but not |n / BN_BITS2|. Or in other words pre-condition
|
||||
* for constant-time-ness is |n < BN_BITS2| or |n / BN_BITS2| being
|
||||
* non-secret.
|
||||
*/
|
||||
int bn_lshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n)
|
||||
{
|
||||
int i, nw;
|
||||
unsigned int lb, rb;
|
||||
BN_ULONG *t, *f;
|
||||
BN_ULONG l, m, rmask = 0;
|
||||
|
||||
assert(n >= 0);
|
||||
|
||||
bn_check_top(r);
|
||||
bn_check_top(a);
|
||||
|
||||
nw = n / BN_BITS2;
|
||||
if (bn_wexpand(r, a->top + nw + 1) == NULL)
|
||||
return 0;
|
||||
r->neg = a->neg;
|
||||
lb = n % BN_BITS2;
|
||||
|
||||
if (a->top != 0) {
|
||||
lb = (unsigned int)n % BN_BITS2;
|
||||
rb = BN_BITS2 - lb;
|
||||
f = a->d;
|
||||
t = r->d;
|
||||
t[a->top + nw] = 0;
|
||||
if (lb == 0)
|
||||
for (i = a->top - 1; i >= 0; i--)
|
||||
t[nw + i] = f[i];
|
||||
else
|
||||
for (i = a->top - 1; i >= 0; i--) {
|
||||
l = f[i];
|
||||
t[nw + i + 1] |= (l >> rb) & BN_MASK2;
|
||||
t[nw + i] = (l << lb) & BN_MASK2;
|
||||
rb %= BN_BITS2; /* say no to undefined behaviour */
|
||||
rmask = (BN_ULONG)0 - rb; /* rmask = 0 - (rb != 0) */
|
||||
rmask |= rmask >> 8;
|
||||
f = &(a->d[0]);
|
||||
t = &(r->d[nw]);
|
||||
l = f[a->top - 1];
|
||||
t[a->top] = (l >> rb) & rmask;
|
||||
for (i = a->top - 1; i > 0; i--) {
|
||||
m = l << lb;
|
||||
l = f[i - 1];
|
||||
t[i] = (m | ((l >> rb) & rmask)) & BN_MASK2;
|
||||
}
|
||||
memset(t, 0, sizeof(*t) * nw);
|
||||
t[0] = (l << lb) & BN_MASK2;
|
||||
} else {
|
||||
/* shouldn't happen, but formally required */
|
||||
r->d[nw] = 0;
|
||||
}
|
||||
if (nw != 0)
|
||||
memset(r->d, 0, sizeof(*t) * nw);
|
||||
|
||||
r->neg = a->neg;
|
||||
r->top = a->top + nw + 1;
|
||||
bn_correct_top(r);
|
||||
bn_check_top(r);
|
||||
r->flags |= BN_FLG_FIXED_TOP;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -173,3 +204,54 @@ int BN_rshift(BIGNUM *r, const BIGNUM *a, int n)
|
|||
bn_check_top(r);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* In respect to shift factor the execution time is invariant of
|
||||
* |n % BN_BITS2|, but not |n / BN_BITS2|. Or in other words pre-condition
|
||||
* for constant-time-ness for sufficiently[!] zero-padded inputs is
|
||||
* |n < BN_BITS2| or |n / BN_BITS2| being non-secret.
|
||||
*/
|
||||
int bn_rshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n)
|
||||
{
|
||||
int i, top, nw;
|
||||
unsigned int lb, rb;
|
||||
BN_ULONG *t, *f;
|
||||
BN_ULONG l, m, mask;
|
||||
|
||||
bn_check_top(r);
|
||||
bn_check_top(a);
|
||||
|
||||
assert(n >= 0);
|
||||
|
||||
nw = n / BN_BITS2;
|
||||
if (nw >= a->top) {
|
||||
/* shouldn't happen, but formally required */
|
||||
BN_zero(r);
|
||||
return 1;
|
||||
}
|
||||
|
||||
rb = (unsigned int)n % BN_BITS2;
|
||||
lb = BN_BITS2 - rb;
|
||||
lb %= BN_BITS2; /* say no to undefined behaviour */
|
||||
mask = (BN_ULONG)0 - lb; /* mask = 0 - (lb != 0) */
|
||||
mask |= mask >> 8;
|
||||
top = a->top - nw;
|
||||
if (r != a && bn_wexpand(r, top) == NULL)
|
||||
return 0;
|
||||
|
||||
t = &(r->d[0]);
|
||||
f = &(a->d[nw]);
|
||||
l = f[0];
|
||||
for (i = 0; i < top - 1; i++) {
|
||||
m = f[i + 1];
|
||||
t[i] = (l >> rb) | ((m << lb) & mask);
|
||||
l = m;
|
||||
}
|
||||
t[i] = l >> rb;
|
||||
|
||||
r->neg = a->neg;
|
||||
r->top = top;
|
||||
r->flags |= BN_FLG_FIXED_TOP;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -65,7 +65,10 @@ int bn_set_words(BIGNUM *a, const BN_ULONG *words, int num_words);
|
|||
* is customarily arranged by bn_correct_top. Output from below functions
|
||||
* is not processed with bn_correct_top, and for this reason it may not be
|
||||
* returned out of public API. It may only be passed internally into other
|
||||
* functions known to support non-minimal or zero-padded BIGNUMs.
|
||||
* functions known to support non-minimal or zero-padded BIGNUMs. Even
|
||||
* though the goal is to facilitate constant-time-ness, not each subroutine
|
||||
* is constant-time by itself. They all have pre-conditions, consult source
|
||||
* code...
|
||||
*/
|
||||
int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
||||
BN_MONT_CTX *mont, BN_CTX *ctx);
|
||||
|
@ -79,5 +82,9 @@ int bn_mod_sub_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|||
const BIGNUM *m);
|
||||
int bn_mul_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx);
|
||||
int bn_sqr_fixed_top(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx);
|
||||
int bn_lshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n);
|
||||
int bn_rshift_fixed_top(BIGNUM *r, const BIGNUM *a, int n);
|
||||
int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
|
||||
const BIGNUM *d, BN_CTX *ctx);
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue