Single step kdf implementation
Reviewed-by: Paul Dale <paul.dale@oracle.com> Reviewed-by: Matt Caswell <matt@openssl.org> (Merged from https://github.com/openssl/openssl/pull/8230)
This commit is contained in:
parent
6098b69e58
commit
9537fe5757
17 changed files with 2047 additions and 7 deletions
6
CHANGES
6
CHANGES
|
@ -31,6 +31,12 @@
|
|||
'enable-buildtest-c++'.
|
||||
[Richard Levitte]
|
||||
|
||||
*) Add Single Step KDF (EVP_KDF_SS) to EVP_KDF.
|
||||
[Shane Lontis]
|
||||
|
||||
*) Add KMAC to EVP_MAC.
|
||||
[Shane Lontis]
|
||||
|
||||
*) Added property based algorithm implementation selection framework to
|
||||
the core.
|
||||
[Paul Dale]
|
||||
|
|
|
@ -898,6 +898,11 @@ KDF_F_PKEY_TLS1_PRF_CTRL_STR:100:pkey_tls1_prf_ctrl_str
|
|||
KDF_F_PKEY_TLS1_PRF_DERIVE:101:pkey_tls1_prf_derive
|
||||
KDF_F_PKEY_TLS1_PRF_INIT:110:pkey_tls1_prf_init
|
||||
KDF_F_SCRYPT_SET_MEMBUF:129:scrypt_set_membuf
|
||||
KDF_F_SSKDF_CTRL_STR:134:sskdf_ctrl_str
|
||||
KDF_F_SSKDF_DERIVE:135:sskdf_derive
|
||||
KDF_F_SSKDF_MAC2CTRL:136:sskdf_mac2ctrl
|
||||
KDF_F_SSKDF_NEW:137:sskdf_new
|
||||
KDF_F_SSKDF_SIZE:138:sskdf_size
|
||||
KDF_F_TLS1_PRF_ALG:111:tls1_prf_alg
|
||||
OBJ_F_OBJ_ADD_OBJECT:105:OBJ_add_object
|
||||
OBJ_F_OBJ_ADD_SIGID:107:OBJ_add_sigid
|
||||
|
@ -2128,7 +2133,6 @@ CONF_R_UNKNOWN_MODULE_NAME:113:unknown module name
|
|||
CONF_R_VARIABLE_EXPANSION_TOO_LONG:116:variable expansion too long
|
||||
CONF_R_VARIABLE_HAS_NO_VALUE:104:variable has no value
|
||||
CRMF_R_BAD_PBM_ITERATIONCOUNT:100:bad pbm iterationcount
|
||||
CRMF_R_MALFORMED_IV:101:malformed iv
|
||||
CRMF_R_CRMFERROR:102:crmferror
|
||||
CRMF_R_ERROR:103:error
|
||||
CRMF_R_ERROR_DECODING_CERTIFICATE:104:error decoding certificate
|
||||
|
@ -2136,6 +2140,7 @@ CRMF_R_ERROR_DECRYPTING_CERTIFICATE:105:error decrypting certificate
|
|||
CRMF_R_ERROR_DECRYPTING_SYMMETRIC_KEY:106:error decrypting symmetric key
|
||||
CRMF_R_FAILURE_OBTAINING_RANDOM:107:failure obtaining random
|
||||
CRMF_R_ITERATIONCOUNT_BELOW_100:108:iterationcount below 100
|
||||
CRMF_R_MALFORMED_IV:101:malformed iv
|
||||
CRMF_R_NULL_ARGUMENT:109:null argument
|
||||
CRMF_R_SETTING_MAC_ALGOR_FAILURE:110:setting mac algor failure
|
||||
CRMF_R_SETTING_OWF_ALGOR_FAILURE:111:setting owf algor failure
|
||||
|
@ -2402,6 +2407,7 @@ EVP_R_UNSUPPORTED_SALT_TYPE:126:unsupported salt type
|
|||
EVP_R_WRAP_MODE_NOT_ALLOWED:170:wrap mode not allowed
|
||||
EVP_R_WRONG_FINAL_BLOCK_LENGTH:109:wrong final block length
|
||||
KDF_R_INVALID_DIGEST:100:invalid digest
|
||||
KDF_R_INVALID_MAC_TYPE:116:invalid mac type
|
||||
KDF_R_MISSING_ITERATION_COUNT:109:missing iteration count
|
||||
KDF_R_MISSING_KEY:104:missing key
|
||||
KDF_R_MISSING_MESSAGE_DIGEST:105:missing message digest
|
||||
|
@ -2414,6 +2420,7 @@ KDF_R_MISSING_SESSION_ID:113:missing session id
|
|||
KDF_R_MISSING_TYPE:114:missing type
|
||||
KDF_R_MISSING_XCGHASH:115:missing xcghash
|
||||
KDF_R_UNKNOWN_PARAMETER_TYPE:103:unknown parameter type
|
||||
KDF_R_UNSUPPORTED_MAC_TYPE:117:unsupported mac type
|
||||
KDF_R_VALUE_ERROR:108:value error
|
||||
KDF_R_VALUE_MISSING:102:value missing
|
||||
KDF_R_WRONG_OUTPUT_BUFFER_SIZE:112:wrong output buffer size
|
||||
|
|
|
@ -31,6 +31,7 @@ static const EVP_KDF_METHOD *standard_methods[] = {
|
|||
&tls1_prf_kdf_meth,
|
||||
&hkdf_kdf_meth,
|
||||
&sshkdf_kdf_meth,
|
||||
&ss_kdf_meth
|
||||
};
|
||||
|
||||
DECLARE_OBJ_BSEARCH_CMP_FN(const EVP_KDF_METHOD *, const EVP_KDF_METHOD *,
|
||||
|
|
|
@ -169,6 +169,7 @@ extern const EVP_KDF_METHOD scrypt_kdf_meth;
|
|||
extern const EVP_KDF_METHOD tls1_prf_kdf_meth;
|
||||
extern const EVP_KDF_METHOD hkdf_kdf_meth;
|
||||
extern const EVP_KDF_METHOD sshkdf_kdf_meth;
|
||||
extern const EVP_KDF_METHOD ss_kdf_meth;
|
||||
|
||||
struct evp_md_st {
|
||||
int type;
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
LIBS=../../libcrypto
|
||||
SOURCE[../../libcrypto]=\
|
||||
tls1_prf.c kdf_err.c kdf_util.c hkdf.c scrypt.c pbkdf2.c sshkdf.c
|
||||
tls1_prf.c kdf_err.c kdf_util.c hkdf.c scrypt.c pbkdf2.c sshkdf.c \
|
||||
sskdf.c
|
||||
|
|
|
@ -59,12 +59,18 @@ static const ERR_STRING_DATA KDF_str_functs[] = {
|
|||
"pkey_tls1_prf_derive"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_PKEY_TLS1_PRF_INIT, 0), "pkey_tls1_prf_init"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_SCRYPT_SET_MEMBUF, 0), "scrypt_set_membuf"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_SSKDF_CTRL_STR, 0), "sskdf_ctrl_str"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_SSKDF_DERIVE, 0), "sskdf_derive"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_SSKDF_MAC2CTRL, 0), "sskdf_mac2ctrl"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_SSKDF_NEW, 0), "sskdf_new"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_SSKDF_SIZE, 0), "sskdf_size"},
|
||||
{ERR_PACK(ERR_LIB_KDF, KDF_F_TLS1_PRF_ALG, 0), "tls1_prf_alg"},
|
||||
{0, NULL}
|
||||
};
|
||||
|
||||
static const ERR_STRING_DATA KDF_str_reasons[] = {
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_INVALID_DIGEST), "invalid digest"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_INVALID_MAC_TYPE), "invalid mac type"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_ITERATION_COUNT),
|
||||
"missing iteration count"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_KEY), "missing key"},
|
||||
|
@ -80,6 +86,8 @@ static const ERR_STRING_DATA KDF_str_reasons[] = {
|
|||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_MISSING_XCGHASH), "missing xcghash"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_UNKNOWN_PARAMETER_TYPE),
|
||||
"unknown parameter type"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_UNSUPPORTED_MAC_TYPE),
|
||||
"unsupported mac type"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_VALUE_ERROR), "value error"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_VALUE_MISSING), "value missing"},
|
||||
{ERR_PACK(ERR_LIB_KDF, 0, KDF_R_WRONG_OUTPUT_BUFFER_SIZE),
|
||||
|
|
481
crypto/kdf/sskdf.c
Normal file
481
crypto/kdf/sskdf.c
Normal file
|
@ -0,0 +1,481 @@
|
|||
/*
|
||||
* Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
|
||||
*
|
||||
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
* this file except in compliance with the License. You can obtain a copy
|
||||
* in the file LICENSE in the source distribution or at
|
||||
* https://www.openssl.org/source/license.html
|
||||
*/
|
||||
|
||||
/*
|
||||
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
|
||||
* Section 4.1.
|
||||
*
|
||||
* The Single Step KDF algorithm is given by:
|
||||
*
|
||||
* Result(0) = empty bit string (i.e., the null string).
|
||||
* For i = 1 to reps, do the following:
|
||||
* Increment counter by 1.
|
||||
* Result(i) = Result(i – 1) || H(counter || Z || FixedInfo).
|
||||
* DKM = LeftmostBits(Result(reps), L))
|
||||
*
|
||||
* NOTES:
|
||||
* Z is a shared secret required to produce the derived key material.
|
||||
* counter is a 4 byte buffer.
|
||||
* FixedInfo is a bit string containing context specific data.
|
||||
* DKM is the output derived key material.
|
||||
* L is the required size of the DKM.
|
||||
* reps = [L / H_outputBits]
|
||||
* H(x) is the auxiliary function that can be either a hash, HMAC or KMAC.
|
||||
* H_outputBits is the length of the output of the auxiliary function H(x).
|
||||
*
|
||||
* Currently there is not a comprehensive list of test vectors for this
|
||||
* algorithm, especially for H(x) = HMAC and H(x) = KMAC.
|
||||
* Test vectors for H(x) = Hash are indirectly used by CAVS KAS tests.
|
||||
*/
|
||||
#include <stdlib.h>
|
||||
#include <stdarg.h>
|
||||
#include <string.h>
|
||||
#include <openssl/hmac.h>
|
||||
#include <openssl/evp.h>
|
||||
#include <openssl/kdf.h>
|
||||
#include "internal/cryptlib.h"
|
||||
#include "internal/evp_int.h"
|
||||
#include "kdf_local.h"
|
||||
|
||||
struct evp_kdf_impl_st {
|
||||
const EVP_MAC *mac; /* H(x) = HMAC_hash OR H(x) = KMAC */
|
||||
const EVP_MD *md; /* H(x) = hash OR when H(x) = HMAC_hash */
|
||||
unsigned char *secret;
|
||||
size_t secret_len;
|
||||
unsigned char *info;
|
||||
size_t info_len;
|
||||
unsigned char *salt;
|
||||
size_t salt_len;
|
||||
size_t out_len; /* optional KMAC parameter */
|
||||
};
|
||||
|
||||
#define SSKDF_MAX_INLEN (1<<30)
|
||||
#define SSKDF_KMAC128_DEFAULT_SALT_SIZE (168 - 4)
|
||||
#define SSKDF_KMAC256_DEFAULT_SALT_SIZE (136 - 4)
|
||||
|
||||
/* KMAC uses a Customisation string of 'KDF' */
|
||||
static const unsigned char kmac_custom_str[] = { 0x4B, 0x44, 0x46 };
|
||||
|
||||
/*
|
||||
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
|
||||
* Section 4. One-Step Key Derivation using H(x) = hash(x)
|
||||
*/
|
||||
static int SSKDF_hash_kdm(const EVP_MD *kdf_md,
|
||||
const unsigned char *z, size_t z_len,
|
||||
const unsigned char *info, size_t info_len,
|
||||
unsigned char *derived_key, size_t derived_key_len)
|
||||
{
|
||||
int ret = 0, hlen;
|
||||
size_t counter, out_len, len = derived_key_len;
|
||||
unsigned char c[4];
|
||||
unsigned char mac[EVP_MAX_MD_SIZE];
|
||||
unsigned char *out = derived_key;
|
||||
EVP_MD_CTX *ctx = NULL, *ctx_init = NULL;
|
||||
|
||||
if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
|
||||
|| derived_key_len > SSKDF_MAX_INLEN
|
||||
|| derived_key_len == 0)
|
||||
return 0;
|
||||
|
||||
hlen = EVP_MD_size(kdf_md);
|
||||
if (hlen <= 0)
|
||||
return 0;
|
||||
out_len = (size_t)hlen;
|
||||
|
||||
ctx = EVP_MD_CTX_create();
|
||||
ctx_init = EVP_MD_CTX_create();
|
||||
if (ctx == NULL || ctx_init == NULL)
|
||||
goto end;
|
||||
|
||||
if (!EVP_DigestInit(ctx_init, kdf_md))
|
||||
goto end;
|
||||
|
||||
for (counter = 1;; counter++) {
|
||||
c[0] = (unsigned char)((counter >> 24) & 0xff);
|
||||
c[1] = (unsigned char)((counter >> 16) & 0xff);
|
||||
c[2] = (unsigned char)((counter >> 8) & 0xff);
|
||||
c[3] = (unsigned char)(counter & 0xff);
|
||||
|
||||
if (!(EVP_MD_CTX_copy_ex(ctx, ctx_init)
|
||||
&& EVP_DigestUpdate(ctx, c, sizeof(c))
|
||||
&& EVP_DigestUpdate(ctx, z, z_len)
|
||||
&& EVP_DigestUpdate(ctx, info, info_len)))
|
||||
goto end;
|
||||
if (len >= out_len) {
|
||||
if (!EVP_DigestFinal_ex(ctx, out, NULL))
|
||||
goto end;
|
||||
out += out_len;
|
||||
len -= out_len;
|
||||
if (len == 0)
|
||||
break;
|
||||
} else {
|
||||
if (!EVP_DigestFinal_ex(ctx, mac, NULL))
|
||||
goto end;
|
||||
memcpy(out, mac, len);
|
||||
break;
|
||||
}
|
||||
}
|
||||
ret = 1;
|
||||
end:
|
||||
EVP_MD_CTX_destroy(ctx);
|
||||
EVP_MD_CTX_destroy(ctx_init);
|
||||
OPENSSL_cleanse(mac, sizeof(mac));
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int kmac_init(EVP_MAC_CTX *ctx, const unsigned char *custom,
|
||||
size_t custom_len, size_t kmac_out_len,
|
||||
size_t derived_key_len, unsigned char **out)
|
||||
{
|
||||
/* Only KMAC has custom data - so return if not KMAC */
|
||||
if (custom == NULL)
|
||||
return 1;
|
||||
|
||||
if (!EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_CUSTOM, custom, custom_len))
|
||||
return 0;
|
||||
|
||||
/* By default only do one iteration if kmac_out_len is not specified */
|
||||
if (kmac_out_len == 0)
|
||||
kmac_out_len = derived_key_len;
|
||||
/* otherwise check the size is valid */
|
||||
else if (!(kmac_out_len == derived_key_len
|
||||
|| kmac_out_len == 20
|
||||
|| kmac_out_len == 28
|
||||
|| kmac_out_len == 32
|
||||
|| kmac_out_len == 48
|
||||
|| kmac_out_len == 64))
|
||||
return 0;
|
||||
|
||||
if (!EVP_MAC_ctrl(ctx, EVP_MAC_CTRL_SET_SIZE, kmac_out_len))
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* For kmac the output buffer can be larger than EVP_MAX_MD_SIZE: so
|
||||
* alloc a buffer for this case.
|
||||
*/
|
||||
if (kmac_out_len > EVP_MAX_MD_SIZE) {
|
||||
*out = OPENSSL_zalloc(kmac_out_len);
|
||||
if (*out == NULL)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Refer to https://csrc.nist.gov/publications/detail/sp/800-56c/rev-1/final
|
||||
* Section 4. One-Step Key Derivation using MAC: i.e either
|
||||
* H(x) = HMAC-hash(salt, x) OR
|
||||
* H(x) = KMAC#(salt, x, outbits, CustomString='KDF')
|
||||
*/
|
||||
static int SSKDF_mac_kdm(const EVP_MAC *kdf_mac, const EVP_MD *hmac_md,
|
||||
const unsigned char *kmac_custom,
|
||||
size_t kmac_custom_len, size_t kmac_out_len,
|
||||
const unsigned char *salt, size_t salt_len,
|
||||
const unsigned char *z, size_t z_len,
|
||||
const unsigned char *info, size_t info_len,
|
||||
unsigned char *derived_key, size_t derived_key_len)
|
||||
{
|
||||
int ret = 0;
|
||||
size_t counter, out_len, len;
|
||||
unsigned char c[4];
|
||||
unsigned char mac_buf[EVP_MAX_MD_SIZE];
|
||||
unsigned char *out = derived_key;
|
||||
EVP_MAC_CTX *ctx = NULL, *ctx_init = NULL;
|
||||
unsigned char *mac = mac_buf, *kmac_buffer = NULL;
|
||||
|
||||
if (z_len > SSKDF_MAX_INLEN || info_len > SSKDF_MAX_INLEN
|
||||
|| derived_key_len > SSKDF_MAX_INLEN
|
||||
|| derived_key_len == 0)
|
||||
return 0;
|
||||
|
||||
ctx = EVP_MAC_CTX_new(kdf_mac);
|
||||
ctx_init = EVP_MAC_CTX_new(kdf_mac);
|
||||
if (ctx == NULL || ctx_init == NULL)
|
||||
goto end;
|
||||
if (hmac_md != NULL &&
|
||||
!EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_MD, hmac_md))
|
||||
goto end;
|
||||
|
||||
if (!EVP_MAC_ctrl(ctx_init, EVP_MAC_CTRL_SET_KEY, salt, salt_len))
|
||||
goto end;
|
||||
|
||||
if (!kmac_init(ctx_init, kmac_custom, kmac_custom_len, kmac_out_len,
|
||||
derived_key_len, &kmac_buffer))
|
||||
goto end;
|
||||
if (kmac_buffer != NULL)
|
||||
mac = kmac_buffer;
|
||||
|
||||
if (!EVP_MAC_init(ctx_init))
|
||||
goto end;
|
||||
|
||||
out_len = EVP_MAC_size(ctx_init); /* output size */
|
||||
if (out_len <= 0)
|
||||
goto end;
|
||||
len = derived_key_len;
|
||||
|
||||
for (counter = 1;; counter++) {
|
||||
c[0] = (unsigned char)((counter >> 24) & 0xff);
|
||||
c[1] = (unsigned char)((counter >> 16) & 0xff);
|
||||
c[2] = (unsigned char)((counter >> 8) & 0xff);
|
||||
c[3] = (unsigned char)(counter & 0xff);
|
||||
|
||||
if (!(EVP_MAC_CTX_copy(ctx, ctx_init)
|
||||
&& EVP_MAC_update(ctx, c, sizeof(c))
|
||||
&& EVP_MAC_update(ctx, z, z_len)
|
||||
&& EVP_MAC_update(ctx, info, info_len)))
|
||||
goto end;
|
||||
if (len >= out_len) {
|
||||
if (!EVP_MAC_final(ctx, out, NULL))
|
||||
goto end;
|
||||
out += out_len;
|
||||
len -= out_len;
|
||||
if (len == 0)
|
||||
break;
|
||||
} else {
|
||||
if (!EVP_MAC_final(ctx, mac, NULL))
|
||||
goto end;
|
||||
memcpy(out, mac, len);
|
||||
break;
|
||||
}
|
||||
}
|
||||
ret = 1;
|
||||
end:
|
||||
OPENSSL_free(kmac_buffer);
|
||||
EVP_MAC_CTX_free(ctx);
|
||||
EVP_MAC_CTX_free(ctx_init);
|
||||
OPENSSL_cleanse(mac, sizeof(mac));
|
||||
return ret;
|
||||
}
|
||||
|
||||
static EVP_KDF_IMPL *sskdf_new(void)
|
||||
{
|
||||
EVP_KDF_IMPL *impl;
|
||||
|
||||
if ((impl = OPENSSL_zalloc(sizeof(*impl))) == NULL)
|
||||
KDFerr(KDF_F_SSKDF_NEW, ERR_R_MALLOC_FAILURE);
|
||||
return impl;
|
||||
}
|
||||
|
||||
static void sskdf_reset(EVP_KDF_IMPL *impl)
|
||||
{
|
||||
OPENSSL_clear_free(impl->secret, impl->secret_len);
|
||||
OPENSSL_clear_free(impl->info, impl->info_len);
|
||||
OPENSSL_clear_free(impl->salt, impl->salt_len);
|
||||
memset(impl, 0, sizeof(*impl));
|
||||
}
|
||||
|
||||
static void sskdf_free(EVP_KDF_IMPL *impl)
|
||||
{
|
||||
sskdf_reset(impl);
|
||||
OPENSSL_free(impl);
|
||||
}
|
||||
|
||||
static int sskdf_set_buffer(va_list args, unsigned char **out, size_t *out_len)
|
||||
{
|
||||
const unsigned char *p;
|
||||
size_t len;
|
||||
|
||||
p = va_arg(args, const unsigned char *);
|
||||
len = va_arg(args, size_t);
|
||||
if (len == 0 || p == NULL)
|
||||
return 1;
|
||||
|
||||
OPENSSL_free(*out);
|
||||
*out = OPENSSL_memdup(p, len);
|
||||
if (*out == NULL)
|
||||
return 0;
|
||||
|
||||
*out_len = len;
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int sskdf_ctrl(EVP_KDF_IMPL *impl, int cmd, va_list args)
|
||||
{
|
||||
const EVP_MD *md;
|
||||
const EVP_MAC *mac;
|
||||
|
||||
switch (cmd) {
|
||||
case EVP_KDF_CTRL_SET_KEY:
|
||||
return sskdf_set_buffer(args, &impl->secret, &impl->secret_len);
|
||||
|
||||
case EVP_KDF_CTRL_SET_SSKDF_INFO:
|
||||
return sskdf_set_buffer(args, &impl->info, &impl->info_len);
|
||||
|
||||
case EVP_KDF_CTRL_SET_MD:
|
||||
md = va_arg(args, const EVP_MD *);
|
||||
if (md == NULL)
|
||||
return 0;
|
||||
|
||||
impl->md = md;
|
||||
return 1;
|
||||
|
||||
case EVP_KDF_CTRL_SET_MAC:
|
||||
mac = va_arg(args, const EVP_MAC *);
|
||||
if (mac == NULL)
|
||||
return 0;
|
||||
|
||||
impl->mac = mac;
|
||||
return 1;
|
||||
|
||||
case EVP_KDF_CTRL_SET_SALT:
|
||||
return sskdf_set_buffer(args, &impl->salt, &impl->salt_len);
|
||||
|
||||
case EVP_KDF_CTRL_SET_MAC_SIZE:
|
||||
impl->out_len = va_arg(args, size_t);
|
||||
return 1;
|
||||
|
||||
default:
|
||||
return -2;
|
||||
}
|
||||
}
|
||||
|
||||
/* Pass a mac to a ctrl */
|
||||
static int sskdf_mac2ctrl(EVP_KDF_IMPL *impl,
|
||||
int (*ctrl)(EVP_KDF_IMPL *impl, int cmd, va_list args),
|
||||
int cmd, const char *mac_name)
|
||||
{
|
||||
const EVP_MAC *mac;
|
||||
|
||||
if (mac_name == NULL || (mac = EVP_get_macbyname(mac_name)) == NULL) {
|
||||
KDFerr(KDF_F_SSKDF_MAC2CTRL, KDF_R_INVALID_MAC_TYPE);
|
||||
return 0;
|
||||
}
|
||||
return call_ctrl(ctrl, impl, cmd, mac);
|
||||
}
|
||||
|
||||
static int sskdf_ctrl_str(EVP_KDF_IMPL *impl, const char *type,
|
||||
const char *value)
|
||||
{
|
||||
if (strcmp(type, "secret") == 0 || strcmp(type, "key") == 0)
|
||||
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
|
||||
value);
|
||||
|
||||
if (strcmp(type, "hexsecret") == 0 || strcmp(type, "hexkey") == 0)
|
||||
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_KEY,
|
||||
value);
|
||||
|
||||
if (strcmp(type, "info") == 0)
|
||||
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
|
||||
value);
|
||||
|
||||
if (strcmp(type, "hexinfo") == 0)
|
||||
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SSKDF_INFO,
|
||||
value);
|
||||
|
||||
if (strcmp(type, "digest") == 0)
|
||||
return kdf_md2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MD, value);
|
||||
|
||||
if (strcmp(type, "mac") == 0)
|
||||
return sskdf_mac2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_MAC, value);
|
||||
|
||||
if (strcmp(type, "salt") == 0)
|
||||
return kdf_str2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
|
||||
|
||||
if (strcmp(type, "hexsalt") == 0)
|
||||
return kdf_hex2ctrl(impl, sskdf_ctrl, EVP_KDF_CTRL_SET_SALT, value);
|
||||
|
||||
|
||||
if (strcmp(type, "maclen") == 0) {
|
||||
int val = atoi(value);
|
||||
if (val < 0) {
|
||||
KDFerr(KDF_F_SSKDF_CTRL_STR, KDF_R_VALUE_ERROR);
|
||||
return 0;
|
||||
}
|
||||
return call_ctrl(sskdf_ctrl, impl, EVP_KDF_CTRL_SET_MAC_SIZE,
|
||||
(size_t)val);
|
||||
}
|
||||
return -2;
|
||||
}
|
||||
|
||||
static size_t sskdf_size(EVP_KDF_IMPL *impl)
|
||||
{
|
||||
int len;
|
||||
|
||||
if (impl->md == NULL) {
|
||||
KDFerr(KDF_F_SSKDF_SIZE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||||
return 0;
|
||||
}
|
||||
len = EVP_MD_size(impl->md);
|
||||
return (len <= 0) ? 0 : (size_t)len;
|
||||
}
|
||||
|
||||
static int sskdf_derive(EVP_KDF_IMPL *impl, unsigned char *key, size_t keylen)
|
||||
{
|
||||
if (impl->secret == NULL) {
|
||||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_SECRET);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (impl->mac != NULL) {
|
||||
/* H(x) = KMAC or H(x) = HMAC */
|
||||
int ret;
|
||||
const unsigned char *custom = NULL;
|
||||
size_t custom_len = 0;
|
||||
int nid;
|
||||
int default_salt_len;
|
||||
|
||||
nid = EVP_MAC_nid(impl->mac);
|
||||
if (nid == EVP_MAC_HMAC) {
|
||||
/* H(x) = HMAC(x, salt, hash) */
|
||||
if (impl->md == NULL) {
|
||||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||||
return 0;
|
||||
}
|
||||
default_salt_len = EVP_MD_block_size(impl->md);
|
||||
if (default_salt_len <= 0)
|
||||
return 0;
|
||||
} else if (nid == EVP_MAC_KMAC128 || nid == EVP_MAC_KMAC256) {
|
||||
/* H(x) = KMACzzz(x, salt, custom) */
|
||||
custom = kmac_custom_str;
|
||||
custom_len = sizeof(kmac_custom_str);
|
||||
if (nid == EVP_MAC_KMAC128)
|
||||
default_salt_len = SSKDF_KMAC128_DEFAULT_SALT_SIZE;
|
||||
else
|
||||
default_salt_len = SSKDF_KMAC256_DEFAULT_SALT_SIZE;
|
||||
} else {
|
||||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_UNSUPPORTED_MAC_TYPE);
|
||||
return 0;
|
||||
}
|
||||
/* If no salt is set then use a default_salt of zeros */
|
||||
if (impl->salt == NULL || impl->salt_len <= 0) {
|
||||
impl->salt = OPENSSL_zalloc(default_salt_len);
|
||||
if (impl->salt == NULL) {
|
||||
KDFerr(KDF_F_SSKDF_DERIVE, ERR_R_MALLOC_FAILURE);
|
||||
return 0;
|
||||
}
|
||||
impl->salt_len = default_salt_len;
|
||||
}
|
||||
ret = SSKDF_mac_kdm(impl->mac, impl->md,
|
||||
custom, custom_len, impl->out_len,
|
||||
impl->salt, impl->salt_len,
|
||||
impl->secret, impl->secret_len,
|
||||
impl->info, impl->info_len, key, keylen);
|
||||
return ret;
|
||||
} else {
|
||||
/* H(x) = hash */
|
||||
if (impl->md == NULL) {
|
||||
KDFerr(KDF_F_SSKDF_DERIVE, KDF_R_MISSING_MESSAGE_DIGEST);
|
||||
return 0;
|
||||
}
|
||||
return SSKDF_hash_kdm(impl->md, impl->secret, impl->secret_len,
|
||||
impl->info, impl->info_len, key, keylen);
|
||||
}
|
||||
}
|
||||
|
||||
const EVP_KDF_METHOD ss_kdf_meth = {
|
||||
EVP_KDF_SS,
|
||||
sskdf_new,
|
||||
sskdf_free,
|
||||
sskdf_reset,
|
||||
sskdf_ctrl,
|
||||
sskdf_ctrl_str,
|
||||
sskdf_size,
|
||||
sskdf_derive
|
||||
};
|
|
@ -1080,7 +1080,7 @@ static const unsigned char so[7775] = {
|
|||
0x2A,0x81,0x1C,0xCF,0x55,0x01,0x83,0x75, /* [ 7766] OBJ_SM2_with_SM3 */
|
||||
};
|
||||
|
||||
#define NUM_NID 1205
|
||||
#define NUM_NID 1206
|
||||
static const ASN1_OBJECT nid_objs[NUM_NID] = {
|
||||
{"UNDEF", "undefined", NID_undef},
|
||||
{"rsadsi", "RSA Data Security, Inc.", NID_rsadsi, 6, &so[0]},
|
||||
|
@ -2287,9 +2287,10 @@ static const ASN1_OBJECT nid_objs[NUM_NID] = {
|
|||
{"BLAKE2SMAC", "blake2smac", NID_blake2smac},
|
||||
{"SSHKDF", "sshkdf", NID_sshkdf},
|
||||
{"SM2-SM3", "SM2-with-SM3", NID_SM2_with_SM3, 8, &so[7766]},
|
||||
{"SSKDF", "sskdf", NID_sskdf},
|
||||
};
|
||||
|
||||
#define NUM_SN 1196
|
||||
#define NUM_SN 1197
|
||||
static const unsigned int sn_objs[NUM_SN] = {
|
||||
364, /* "AD_DVCS" */
|
||||
419, /* "AES-128-CBC" */
|
||||
|
@ -2577,6 +2578,7 @@ static const unsigned int sn_objs[NUM_SN] = {
|
|||
100, /* "SN" */
|
||||
1006, /* "SNILS" */
|
||||
1203, /* "SSHKDF" */
|
||||
1205, /* "SSKDF" */
|
||||
16, /* "ST" */
|
||||
143, /* "SXNetID" */
|
||||
1062, /* "SipHash" */
|
||||
|
@ -3489,7 +3491,7 @@ static const unsigned int sn_objs[NUM_SN] = {
|
|||
1093, /* "x509ExtAdmission" */
|
||||
};
|
||||
|
||||
#define NUM_LN 1196
|
||||
#define NUM_LN 1197
|
||||
static const unsigned int ln_objs[NUM_LN] = {
|
||||
363, /* "AD Time Stamping" */
|
||||
405, /* "ANSI X9.62" */
|
||||
|
@ -4641,6 +4643,7 @@ static const unsigned int ln_objs[NUM_LN] = {
|
|||
1133, /* "sm4-ecb" */
|
||||
1135, /* "sm4-ofb" */
|
||||
1203, /* "sshkdf" */
|
||||
1205, /* "sskdf" */
|
||||
16, /* "stateOrProvinceName" */
|
||||
660, /* "streetAddress" */
|
||||
498, /* "subtreeMaximumQuality" */
|
||||
|
|
|
@ -1202,3 +1202,4 @@ blake2bmac 1201
|
|||
blake2smac 1202
|
||||
sshkdf 1203
|
||||
SM2_with_SM3 1204
|
||||
sskdf 1205
|
||||
|
|
|
@ -1614,6 +1614,9 @@ secg-scheme 14 3 : dhSinglePass-cofactorDH-sha512kdf-scheme
|
|||
# NID for SSHKDF
|
||||
: SSHKDF : sshkdf
|
||||
|
||||
# NID for SSKDF
|
||||
: SSKDF : sskdf
|
||||
|
||||
# RFC 4556
|
||||
1 3 6 1 5 2 3 : id-pkinit
|
||||
id-pkinit 4 : pkInitClientAuth : PKINIT Client Auth
|
||||
|
|
|
@ -135,6 +135,17 @@ EVP_KDF_ctrl_str() type string: "iter"
|
|||
|
||||
The value string is expected to be a decimal number.
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_MAC>
|
||||
|
||||
This control expects one argument: C<EVP_MAC *mac>
|
||||
|
||||
Some KDF implementations use a MAC as an underlying computation
|
||||
algorithm, this control sets what the MAC algorithm should be.
|
||||
|
||||
EVP_KDF_ctrl_str() type string: "mac"
|
||||
|
||||
The value string is expected to be the name of a MAC.
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_MD>
|
||||
|
||||
This control expects one argument: C<EVP_MD *md>
|
||||
|
@ -168,6 +179,19 @@ decoded before being passed on as the control value.
|
|||
|
||||
=back
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_MAC_SIZE>
|
||||
|
||||
This control expects one argument: C<size_t size>
|
||||
|
||||
Used by implementations that use a MAC with a variable output size (KMAC). For
|
||||
those KDF implementations that support it, this control sets the MAC output size.
|
||||
|
||||
The default value, if any, is implementation dependent.
|
||||
|
||||
EVP_KDF_ctrl_str() type string: "outlen"
|
||||
|
||||
The value string is expected to be a decimal number.
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_MAXMEM_BYTES>
|
||||
|
||||
This control expects one argument: C<uint64_t maxmem_bytes>
|
||||
|
@ -204,10 +228,18 @@ supported by the KDF algorithm.
|
|||
=head1 SEE ALSO
|
||||
|
||||
L<EVP_KDF_SCRYPT(7)>
|
||||
L<EVP_KDF_TLS1_PRF(7)>
|
||||
L<EVP_KDF_PBKDF2(7)>
|
||||
L<EVP_KDF_HKDF(7)>
|
||||
L<EVP_KDF_SS(7)>
|
||||
|
||||
=head1 HISTORY
|
||||
|
||||
This functionality was added to OpenSSL 3.0.0.
|
||||
|
||||
=head1 COPYRIGHT
|
||||
|
||||
Copyright 2018 The OpenSSL Project Authors. All Rights Reserved.
|
||||
Copyright 2019 The OpenSSL Project Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
this file except in compliance with the License. You can obtain a copy
|
||||
|
|
226
doc/man7/EVP_KDF_SS.pod
Normal file
226
doc/man7/EVP_KDF_SS.pod
Normal file
|
@ -0,0 +1,226 @@
|
|||
=pod
|
||||
|
||||
=head1 NAME
|
||||
|
||||
EVP_KDF_SS - The Single Step / One Step EVP_KDF implementation
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
The EVP_KDF_SS algorithm implements the Single Step key derivation function (SSKDF).
|
||||
SSKDF derives a key using input such as a shared secret key (that was generated
|
||||
during the execution of a key establishment scheme) and fixedinfo.
|
||||
SSKDF is also informally referred to as 'Concat KDF'.
|
||||
|
||||
=head2 Auxilary function
|
||||
|
||||
The implementation uses a selectable auxiliary function H, which can be one of:
|
||||
|
||||
=over 4
|
||||
|
||||
=item B<H(x) = hash(x, digest=md)>
|
||||
|
||||
=item B<H(x) = HMAC_hash(x, key=salt, digest=md)>
|
||||
|
||||
=item B<H(x) = KMACxxx(x, key=salt, custom="KDF", outlen=mac_size)>
|
||||
|
||||
=back
|
||||
|
||||
Both the HMAC and KMAC implementations set the key using the 'salt' value.
|
||||
The hash and HMAC also require the digest to be set.
|
||||
|
||||
=head2 Numeric identity
|
||||
|
||||
B<EVP_KDF_SS> is the numeric identity for this implementation; it
|
||||
can be used with the EVP_KDF_CTX_new_id() function.
|
||||
|
||||
=head2 Supported controls
|
||||
|
||||
The supported controls are:
|
||||
|
||||
=over 4
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_MD>
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_MAC>
|
||||
|
||||
=item B<EVP_MAC_CTRL_SET_MAC_SIZE>
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_SALT>
|
||||
|
||||
These controls work as described in L<EVP_KDF_CTX(3)/CONTROLS>.
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_KEY>
|
||||
|
||||
This control expects two arguments: C<unsigned char *secret>, C<size_t secretlen>
|
||||
|
||||
The shared secret used for key derivation. This control sets the secret.
|
||||
|
||||
EVP_KDF_ctrl_str() takes two type strings for this control:
|
||||
|
||||
=over 4
|
||||
|
||||
=item "secret"
|
||||
|
||||
The value string is used as is.
|
||||
|
||||
=item "hexsecret"
|
||||
|
||||
The value string is expected to be a hexadecimal number, which will be
|
||||
decoded before being passed on as the control value.
|
||||
|
||||
=back
|
||||
|
||||
=item B<EVP_KDF_CTRL_SET_SSKDF_INFO>
|
||||
|
||||
This control expects two arguments: C<unsigned char *info>, C<size_t infolen>
|
||||
|
||||
An optional value for fixedinfo, also known as otherinfo. This control sets the fixedinfo.
|
||||
|
||||
EVP_KDF_ctrl_str() takes two type strings for this control:
|
||||
|
||||
=over 4
|
||||
|
||||
=item "info"
|
||||
|
||||
The value string is used as is.
|
||||
|
||||
=item "hexinfo"
|
||||
|
||||
The value string is expected to be a hexadecimal number, which will be
|
||||
decoded before being passed on as the control value.
|
||||
|
||||
=back
|
||||
|
||||
=back
|
||||
|
||||
=head1 NOTES
|
||||
|
||||
A context for SSKDF can be obtained by calling:
|
||||
|
||||
EVP_KDF_CTX *kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
|
||||
The output length of an SSKDF is specified via the C<keylen>
|
||||
parameter to the L<EVP_KDF_derive(3)> function.
|
||||
|
||||
=head1 EXAMPLE
|
||||
|
||||
This example derives 10 bytes using H(x) = SHA-256, with the secret key "secret"
|
||||
and fixedinfo value "label":
|
||||
|
||||
EVP_KDF_CTX *kctx;
|
||||
unsigned char out[10];
|
||||
|
||||
kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_MD");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_KEY");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SSKDF_INFO, "label", (size_t)5) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_SSKDF_INFO");
|
||||
}
|
||||
if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
|
||||
error("EVP_KDF_derive");
|
||||
}
|
||||
|
||||
EVP_KDF_CTX_free(kctx);
|
||||
|
||||
=head1 EXAMPLE
|
||||
|
||||
This example derives 10 bytes using H(x) = HMAC(SHA-256), with the secret key "secret",
|
||||
fixedinfo value "label" and salt "salt":
|
||||
|
||||
EVP_KDF_CTX *kctx;
|
||||
unsigned char out[10];
|
||||
|
||||
kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAC, EVP_get_macbyname("HMAC")) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_MAC");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_MD");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_KEY");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SSKDF_INFO, "label", (size_t)5) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_SSKDF_INFO");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "salt", (size_t)4) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_SALT");
|
||||
}
|
||||
if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
|
||||
error("EVP_KDF_derive");
|
||||
}
|
||||
|
||||
EVP_KDF_CTX_free(kctx);
|
||||
|
||||
=head1 EXAMPLE
|
||||
|
||||
This example derives 10 bytes using H(x) = KMAC128(x,salt,outlen), with the secret key "secret"
|
||||
fixedinfo value "label", salt of "salt" and KMAC outlen of 20:
|
||||
|
||||
EVP_KDF_CTX *kctx;
|
||||
unsigned char out[10];
|
||||
|
||||
kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAC, EVP_get_macbyname("KMAC128")) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_MAC");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_MD");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, "secret", (size_t)6) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_KEY");
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SSKDF_INFO, "label", (size_t)5) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_SSKDF_INFO");
|
||||
}
|
||||
/* If not specified the salt will be set to a default value */
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, "salt", (size_t)4) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_SALT");
|
||||
}
|
||||
/* If not specified the default size will be the size of the derived key */
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAC_SIZE, (size_t)20) <= 0) {
|
||||
error("EVP_KDF_CTRL_SET_MAC_SIZE");
|
||||
}
|
||||
if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
|
||||
error("EVP_KDF_derive");
|
||||
}
|
||||
|
||||
EVP_KDF_CTX_free(kctx);
|
||||
|
||||
|
||||
=head1 CONFORMING TO
|
||||
|
||||
NIST SP800-56Cr1.
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<EVP_KDF_CTX>,
|
||||
L<EVP_KDF_CTX_new_id(3)>,
|
||||
L<EVP_KDF_CTX_free(3)>,
|
||||
L<EVP_KDF_ctrl(3)>,
|
||||
L<EVP_KDF_size(3)>,
|
||||
L<EVP_KDF_derive(3)>,
|
||||
L<EVP_KDF_CTX(3)/CONTROLS>
|
||||
|
||||
=head1 HISTORY
|
||||
|
||||
This functionality was added to OpenSSL 3.0.0.
|
||||
|
||||
=head1 COPYRIGHT
|
||||
|
||||
Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. Copyright
|
||||
(c) 2019, Oracle and/or its affiliates. All rights reserved.
|
||||
|
||||
Licensed under the Apache License 2.0 (the "License"). You may not use
|
||||
this file except in compliance with the License. You can obtain a copy
|
||||
in the file LICENSE in the source distribution or at
|
||||
L<https://www.openssl.org/source/license.html>.
|
||||
|
||||
=cut
|
|
@ -23,6 +23,7 @@ extern "C" {
|
|||
# define EVP_KDF_TLS1_PRF NID_tls1_prf
|
||||
# define EVP_KDF_HKDF NID_hkdf
|
||||
# define EVP_KDF_SSHKDF NID_sshkdf
|
||||
# define EVP_KDF_SS NID_sskdf
|
||||
|
||||
EVP_KDF_CTX *EVP_KDF_CTX_new_id(int id);
|
||||
void EVP_KDF_CTX_free(EVP_KDF_CTX *ctx);
|
||||
|
@ -53,6 +54,9 @@ int EVP_KDF_derive(EVP_KDF_CTX *ctx, unsigned char *key, size_t keylen);
|
|||
# define EVP_KDF_CTRL_SET_SSHKDF_XCGHASH 0x10 /* unsigned char *, size_t */
|
||||
# define EVP_KDF_CTRL_SET_SSHKDF_SESSION_ID 0x11 /* unsigned char *, size_t */
|
||||
# define EVP_KDF_CTRL_SET_SSHKDF_TYPE 0x12 /* int */
|
||||
# define EVP_KDF_CTRL_SET_MAC 0x13 /* EVP_MAC * */
|
||||
# define EVP_KDF_CTRL_SET_MAC_SIZE 0x14 /* size_t */
|
||||
# define EVP_KDF_CTRL_SET_SSKDF_INFO 0x15 /* unsigned char *, size_t */
|
||||
|
||||
# define EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND 0
|
||||
# define EVP_KDF_HKDF_MODE_EXTRACT_ONLY 1
|
||||
|
|
|
@ -56,12 +56,18 @@ int ERR_load_KDF_strings(void);
|
|||
# define KDF_F_PKEY_TLS1_PRF_DERIVE 101
|
||||
# define KDF_F_PKEY_TLS1_PRF_INIT 110
|
||||
# define KDF_F_SCRYPT_SET_MEMBUF 129
|
||||
# define KDF_F_SSKDF_CTRL_STR 134
|
||||
# define KDF_F_SSKDF_DERIVE 135
|
||||
# define KDF_F_SSKDF_MAC2CTRL 136
|
||||
# define KDF_F_SSKDF_NEW 137
|
||||
# define KDF_F_SSKDF_SIZE 138
|
||||
# define KDF_F_TLS1_PRF_ALG 111
|
||||
|
||||
/*
|
||||
* KDF reason codes.
|
||||
*/
|
||||
# define KDF_R_INVALID_DIGEST 100
|
||||
# define KDF_R_INVALID_MAC_TYPE 116
|
||||
# define KDF_R_MISSING_ITERATION_COUNT 109
|
||||
# define KDF_R_MISSING_KEY 104
|
||||
# define KDF_R_MISSING_MESSAGE_DIGEST 105
|
||||
|
@ -74,6 +80,7 @@ int ERR_load_KDF_strings(void);
|
|||
# define KDF_R_MISSING_TYPE 114
|
||||
# define KDF_R_MISSING_XCGHASH 115
|
||||
# define KDF_R_UNKNOWN_PARAMETER_TYPE 103
|
||||
# define KDF_R_UNSUPPORTED_MAC_TYPE 117
|
||||
# define KDF_R_VALUE_ERROR 108
|
||||
# define KDF_R_VALUE_MISSING 102
|
||||
# define KDF_R_WRONG_OUTPUT_BUFFER_SIZE 112
|
||||
|
|
|
@ -5000,6 +5000,10 @@
|
|||
#define LN_sshkdf "sshkdf"
|
||||
#define NID_sshkdf 1203
|
||||
|
||||
#define SN_sskdf "SSKDF"
|
||||
#define LN_sskdf "sskdf"
|
||||
#define NID_sskdf 1205
|
||||
|
||||
#define SN_id_pkinit "id-pkinit"
|
||||
#define NID_id_pkinit 1031
|
||||
#define OBJ_id_pkinit 1L,3L,6L,1L,5L,2L,3L
|
||||
|
|
|
@ -225,6 +225,170 @@ err:
|
|||
}
|
||||
#endif
|
||||
|
||||
static int test_kdf_ss_hash(void)
|
||||
{
|
||||
EVP_KDF_CTX *kctx;
|
||||
const unsigned char z[] = {
|
||||
0x6d,0xbd,0xc2,0x3f,0x04,0x54,0x88,0xe4,0x06,0x27,0x57,0xb0,0x6b,0x9e,
|
||||
0xba,0xe1,0x83,0xfc,0x5a,0x59,0x46,0xd8,0x0d,0xb9,0x3f,0xec,0x6f,0x62,
|
||||
0xec,0x07,0xe3,0x72,0x7f,0x01,0x26,0xae,0xd1,0x2c,0xe4,0xb2,0x62,0xf4,
|
||||
0x7d,0x48,0xd5,0x42,0x87,0xf8,0x1d,0x47,0x4c,0x7c,0x3b,0x18,0x50,0xe9
|
||||
};
|
||||
const unsigned char other[] = {
|
||||
0xa1,0xb2,0xc3,0xd4,0xe5,0x43,0x41,0x56,0x53,0x69,0x64,0x3c,0x83,0x2e,
|
||||
0x98,0x49,0xdc,0xdb,0xa7,0x1e,0x9a,0x31,0x39,0xe6,0x06,0xe0,0x95,0xde,
|
||||
0x3c,0x26,0x4a,0x66,0xe9,0x8a,0x16,0x58,0x54,0xcd,0x07,0x98,0x9b,0x1e,
|
||||
0xe0,0xec,0x3f,0x8d,0xbe
|
||||
};
|
||||
const unsigned char expected[] = {
|
||||
0xa4,0x62,0xde,0x16,0xa8,0x9d,0xe8,0x46,0x6e,0xf5,0x46,0x0b,0x47,0xb8
|
||||
};
|
||||
unsigned char out[14];
|
||||
|
||||
kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha224()) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_MD");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, z, sizeof(z)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_KEY");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SSKDF_INFO, other,
|
||||
sizeof(other)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_OTHER");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
|
||||
TEST_error("EVP_KDF_derive");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected)))
|
||||
return 0;
|
||||
|
||||
EVP_KDF_CTX_free(kctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int test_kdf_ss_hmac(void)
|
||||
{
|
||||
EVP_KDF_CTX *kctx;
|
||||
const EVP_MAC *mac;
|
||||
|
||||
const unsigned char z[] = {
|
||||
0xb7,0x4a,0x14,0x9a,0x16,0x15,0x46,0xf8,0xc2,0x0b,0x06,0xac,0x4e,0xd4
|
||||
};
|
||||
const unsigned char other[] = {
|
||||
0x34,0x8a,0x37,0xa2,0x7e,0xf1,0x28,0x2f,0x5f,0x02,0x0d,0xcc
|
||||
};
|
||||
const unsigned char salt[] = {
|
||||
0x36,0x38,0x27,0x1c,0xcd,0x68,0xa2,0x5d,0xc2,0x4e,0xcd,0xdd,0x39,0xef,
|
||||
0x3f,0x89
|
||||
};
|
||||
const unsigned char expected[] = {
|
||||
0x44,0xf6,0x76,0xe8,0x5c,0x1b,0x1a,0x8b,0xbc,0x3d,0x31,0x92,0x18,0x63,
|
||||
0x1c,0xa3
|
||||
};
|
||||
unsigned char out[16];
|
||||
|
||||
kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
mac = EVP_get_macbyname("HMAC");
|
||||
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAC, mac) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_MAC");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MD, EVP_sha256()) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_MD");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, z, sizeof(z)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_KEY");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SSKDF_INFO, other,
|
||||
sizeof(other)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_OTHER");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, salt, sizeof(salt)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_SALT");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
|
||||
TEST_error("EVP_KDF_derive");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected)))
|
||||
return 0;
|
||||
|
||||
EVP_KDF_CTX_free(kctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int test_kdf_ss_kmac(void)
|
||||
{
|
||||
EVP_KDF_CTX *kctx;
|
||||
unsigned char out[64];
|
||||
const EVP_MAC *mac;
|
||||
|
||||
const unsigned char z[] = {
|
||||
0xb7,0x4a,0x14,0x9a,0x16,0x15,0x46,0xf8,0xc2,0x0b,0x06,0xac,0x4e,0xd4
|
||||
};
|
||||
const unsigned char other[] = {
|
||||
0x34,0x8a,0x37,0xa2,0x7e,0xf1,0x28,0x2f,0x5f,0x02,0x0d,0xcc
|
||||
};
|
||||
const unsigned char salt[] = {
|
||||
0x36,0x38,0x27,0x1c,0xcd,0x68,0xa2,0x5d,0xc2,0x4e,0xcd,0xdd,0x39,0xef,
|
||||
0x3f,0x89
|
||||
};
|
||||
const unsigned char expected[] = {
|
||||
0xe9,0xc1,0x84,0x53,0xa0,0x62,0xb5,0x3b,0xdb,0xfc,0xbb,0x5a,0x34,0xbd,
|
||||
0xb8,0xe5,0xe7,0x07,0xee,0xbb,0x5d,0xd1,0x34,0x42,0x43,0xd8,0xcf,0xc2,
|
||||
0xc2,0xe6,0x33,0x2f,0x91,0xbd,0xa5,0x86,0xf3,0x7d,0xe4,0x8a,0x65,0xd4,
|
||||
0xc5,0x14,0xfd,0xef,0xaa,0x1e,0x67,0x54,0xf3,0x73,0xd2,0x38,0xe1,0x95,
|
||||
0xae,0x15,0x7e,0x1d,0xe8,0x14,0x98,0x03
|
||||
};
|
||||
|
||||
kctx = EVP_KDF_CTX_new_id(EVP_KDF_SS);
|
||||
mac = EVP_get_macbyname("KMAC128");
|
||||
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAC, mac) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_MAC");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_KEY, z, sizeof(z)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_KEY");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SSKDF_INFO, other,
|
||||
sizeof(other)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_OTHER");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_SALT, salt, sizeof(salt)) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_SALT");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_ctrl(kctx, EVP_KDF_CTRL_SET_MAC_SIZE, (size_t)20) <= 0) {
|
||||
TEST_error("EVP_KDF_CTRL_SET_MACSIZE");
|
||||
return 0;
|
||||
}
|
||||
if (EVP_KDF_derive(kctx, out, sizeof(out)) <= 0) {
|
||||
TEST_error("EVP_KDF_derive");
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!TEST_mem_eq(out, sizeof(out), expected, sizeof(expected)))
|
||||
return 0;
|
||||
|
||||
EVP_KDF_CTX_free(kctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int setup_tests(void)
|
||||
{
|
||||
ADD_TEST(test_kdf_tls1_prf);
|
||||
|
@ -233,5 +397,8 @@ int setup_tests(void)
|
|||
#ifndef OPENSSL_NO_SCRYPT
|
||||
ADD_TEST(test_kdf_scrypt);
|
||||
#endif
|
||||
ADD_TEST(test_kdf_ss_hash);
|
||||
ADD_TEST(test_kdf_ss_hmac);
|
||||
ADD_TEST(test_kdf_ss_kmac);
|
||||
return 1;
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
Loading…
Reference in a new issue