RSA security bits calculation

NIST has updated their guidelines in appendix D of SP 800-56B rev2 (draft)
providing a formula for the number of security bits it terms of the length
of the RSA key.

This is an implementation of this formula using fixed point arithmetic.
For integers 1 .. 100,000 it rounds down to the next smaller 8 bit strength
270 times.  It never errs to the high side.  None of the rounded values occur
near any of the commonly selected lengths.

Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7352)
This commit is contained in:
Pauli 2018-10-05 09:19:30 +10:00
parent 5b4cb385c1
commit 97b0b713fb
2 changed files with 188 additions and 1 deletions

View file

@ -163,6 +163,133 @@ void *RSA_get_ex_data(const RSA *r, int idx)
return CRYPTO_get_ex_data(&r->ex_data, idx);
}
/*
* Define a scaling constant for our fixed point arithmetic.
* This value must be a power of two because the base two logarithm code
* makes this assumption. The exponent must also be a multiple of three so
* that the scale factor has an exact cube root. Finally, the scale factor
* should not be so large that a multiplication of two scaled numbers
* overflows a 64 bit unsigned integer.
*/
static const unsigned int scale = 1 << 18;
static const unsigned int cbrt_scale = 1 << (2 * 18 / 3);
/* Define some constants, none exceed 32 bits */
static const unsigned int log_2 = 0x02c5c8; /* scale * log(2) */
static const unsigned int log_e = 0x05c551; /* scale * log2(M_E) */
static const unsigned int c1_923 = 0x07b126; /* scale * 1.923 */
static const unsigned int c4_690 = 0x12c28f; /* scale * 4.690 */
/*
* Multiply two scale integers together and rescale the result.
*/
static ossl_inline uint64_t mul2(uint64_t a, uint64_t b)
{
return a * b / scale;
}
/*
* Calculate the cube root of a 64 bit scaled integer.
* Although the cube root of a 64 bit number does fit into a 32 bit unsigned
* integer, this is not guaranteed after scaling, so this function has a
* 64 bit return. This uses the shifting nth root algorithm with some
* algebraic simplifications.
*/
static uint64_t icbrt64(uint64_t x)
{
uint64_t r = 0;
uint64_t b;
int s;
for (s = 63; s >= 0; s -= 3) {
r <<= 1;
b = 3 * r * (r + 1) + 1;
if ((x >> s) >= b) {
x -= b << s;
r++;
}
}
return r * cbrt_scale;
}
/*
* Calculate the natural logarithm of a 64 bit scaled integer.
* This is done by calculating a base two logarithm and scaling.
* The maximum logarithm (base 2) is 64 and this reduces base e, so
* a 32 bit result should not overflow. The argument passed must be
* greater than unity so we don't need to handle negative results.
*/
static uint32_t ilog_e(uint64_t v)
{
uint32_t i, r = 0;
/*
* Scale down the value into the range 1 .. 2.
*
* If fractional numbers need to be processed, another loop needs
* to go here that checks v < scale and if so multiplies it by 2 and
* reduces r by scale. This also means making r signed.
*/
while (v >= 2 * scale) {
v >>= 1;
r += scale;
}
for (i = scale / 2; i != 0; i /= 2) {
v = mul2(v, v);
if (v >= 2 * scale) {
v >>= 1;
r += i;
}
}
r = (r * (uint64_t)scale) / log_e;
return r;
}
/*
* NIST SP 800-56B rev 2 Appendix D: Maximum Security Strength Estimates for IFC
* Modulus Lengths.
*
* E = \frac{1.923 \sqrt[3]{nBits \cdot log_e(2)}
* \cdot(log_e(nBits \cdot log_e(2))^{2/3} - 4.69}{log_e(2)}
* The two cube roots are merged together here.
*/
static uint16_t rsa_compute_security_bits(int n)
{
uint64_t x;
uint32_t lx;
uint16_t y;
/* Look for common values as listed in SP 800-56B rev 2 Appendix D */
switch (n) {
case 2048:
return 112;
case 3072:
return 128;
case 4096:
return 152;
case 6144:
return 176;
case 8192:
return 200;
}
/*
* The first incorrect result (i.e. not accurate or off by one low) occurs
* for n = 699668. The true value here is 1200. Instead of using this n
* as the check threshold, the smallest n such that the correct result is
* 1200 is used instead.
*/
if (n >= 687737)
return 1200;
if (n < 8)
return 0;
x = n * (uint64_t)log_2;
lx = ilog_e(x);
y = (uint16_t)((mul2(c1_923, icbrt64(mul2(mul2(x, lx), lx))) - c4_690)
/ log_2);
return (y + 4) & ~7;
}
int RSA_security_bits(const RSA *rsa)
{
int bits = BN_num_bits(rsa->n);
@ -174,7 +301,7 @@ int RSA_security_bits(const RSA *rsa)
if (ex_primes <= 0 || (ex_primes + 2) > rsa_multip_cap(bits))
return 0;
}
return BN_security_bits(bits, -1);
return rsa_compute_security_bits(bits);
}
int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)

View file

@ -329,10 +329,70 @@ err:
return ret;
}
static const struct {
int bits;
unsigned int r;
} rsa_security_bits_cases[] = {
/* NIST SP 800-56B rev 2 (draft) Appendix D Table 5 */
{ 2048, 112 },
{ 3072, 128 },
{ 4096, 152 },
{ 6144, 176 },
{ 8192, 200 },
/* Older values */
{ 256, 40 },
{ 512, 56 },
{ 1024, 80 },
/* Slightly different value to the 256 that NIST lists in their tables */
{ 15360, 264 },
/* Some other values */
{ 8888, 208 },
{ 2468, 120 },
{ 13456, 248 }
};
static int test_rsa_security_bit(int n)
{
static const unsigned char vals[8] = {
0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40
};
RSA *key = RSA_new();
const int bits = rsa_security_bits_cases[n].bits;
const int result = rsa_security_bits_cases[n].r;
const int bytes = (bits + 7) / 8;
int r = 0;
unsigned char num[2000];
if (!TEST_ptr(key) || !TEST_int_le(bytes, (int)sizeof(num)))
goto err;
/*
* It is necessary to set the RSA key in order to ask for the strength.
* A BN of an appropriate size is created, in general it won't have the
* properties necessary for RSA to function. This is okay here since
* the RSA key is never used.
*/
memset(num, vals[bits % 8], bytes);
/*
* The 'e' parameter is set to the same value as 'n'. This saves having
* an extra BN to hold a sensible value for 'e'. This is safe since the
* RSA key is not used. The 'd' parameter can be NULL safely.
*/
if (TEST_true(RSA_set0_key(key, BN_bin2bn(num, bytes, NULL),
BN_bin2bn(num, bytes, NULL), NULL))
&& TEST_uint_eq(RSA_security_bits(key), result))
r = 1;
err:
RSA_free(key);
return r;
}
int setup_tests(void)
{
ADD_ALL_TESTS(test_rsa_pkcs1, 3);
ADD_ALL_TESTS(test_rsa_oaep, 3);
ADD_ALL_TESTS(test_rsa_security_bit, OSSL_NELEM(rsa_security_bits_cases));
return 1;
}
#endif