perlasm/x86_64-xlate.pl: recognize DWARF CFI directives.
CFI directives annotate instructions that are significant for stack unwinding procedure. In addition to directives recognized by GNU assembler this module implements three synthetic ones: - .cfi_push annotates push instructions in prologue and translates to .cfi_adjust_cfa_offset (if needed) and .cfi_offset; - .cfi_pop annotates pop instructions in epilogue and translates to .cfi_adjust_cfs_offset (if needed) and .cfi_restore; - .cfi_cfa_expression encodes DW_CFA_def_cfa_expression and passes it to .cfi_escape as byte vector; CFA expression syntax is made up mix of DWARF operator suffixes [subset of] and references to registers with optional bias. Following example describes offloaded original stack pointer at specific offset from current stack pointer: .cfi_cfa_expression %rsp+40,deref,+8 Final +8 has everything to do with the fact that CFA, Canonical Frame Address, is reference to top of caller's stack, and on x86_64 call to subroutine pushes 8-byte return address. Triggered by request from Adam Langley. Reviewed-by: Rich Salz <rsalz@openssl.org>
This commit is contained in:
parent
9d301cfea7
commit
a3b5684fc1
1 changed files with 237 additions and 0 deletions
|
@ -465,6 +465,240 @@ my %globals;
|
|||
}
|
||||
}
|
||||
}
|
||||
{ package cfi_directive;
|
||||
# CFI directives annotate instructions that are significant for
|
||||
# stack unwinding procedure compliant with DWARF specification,
|
||||
# see http://dwarfstd.org/. Besides naturally expected for this
|
||||
# script platform-specific filtering function, this module adds
|
||||
# three auxiliary synthetic directives not recognized by [GNU]
|
||||
# assembler:
|
||||
#
|
||||
# - .cfi_push to annotate push instructions in prologue, which
|
||||
# translates to .cfi_adjust_cfa_offset (if needed) and
|
||||
# .cfi_offset;
|
||||
# - .cfi_pop to annotate pop instructions in epilogue, which
|
||||
# translates to .cfi_adjust_cfa_offset (if needed) and
|
||||
# .cfi_restore;
|
||||
# - [and most notably] .cfi_cfa_expression which encodes
|
||||
# DW_CFA_def_cfa_expression and passes it to .cfi_escape as
|
||||
# byte vector;
|
||||
#
|
||||
# CFA expressions were introduced in DWARF specification version
|
||||
# 3 and describe how to deduce CFA, Canonical Frame Address. This
|
||||
# becomes handy if your stack frame is variable and you can't
|
||||
# spare register for [previous] frame pointer. Suggested directive
|
||||
# syntax is made-up mix of DWARF operator suffixes [subset of]
|
||||
# and references to registers with optional bias. Following example
|
||||
# describes offloaded *original* stack pointer at specific offset
|
||||
# from *current* stack pointer:
|
||||
#
|
||||
# .cfi_cfa_expression %rsp+40,deref,+8
|
||||
#
|
||||
# Final +8 has everything to do with the fact that CFA is defined
|
||||
# as reference to top of caller's stack, and on x86_64 call to
|
||||
# subroutine pushes 8-byte return address. In other words original
|
||||
# stack pointer upon entry to a subroutine is 8 bytes off from CFA.
|
||||
|
||||
# Below constants are taken from "DWARF Expressions" section of the
|
||||
# DWARF specification, section is numbered 7.7 in versions 3 and 4.
|
||||
my %DW_OP_simple = ( # no-arg operators, mapped directly
|
||||
deref => 0x06, dup => 0x12,
|
||||
drop => 0x13, over => 0x14,
|
||||
pick => 0x15, swap => 0x16,
|
||||
rot => 0x17, xderef => 0x18,
|
||||
|
||||
abs => 0x19, and => 0x1a,
|
||||
div => 0x1b, minus => 0x1c,
|
||||
mod => 0x1d, mul => 0x1e,
|
||||
neg => 0x1f, not => 0x20,
|
||||
or => 0x21, plus => 0x22,
|
||||
shl => 0x24, shr => 0x25,
|
||||
shra => 0x26, xor => 0x27,
|
||||
);
|
||||
|
||||
my %DW_OP_complex = ( # used in specific subroutines
|
||||
constu => 0x10, # uleb128
|
||||
consts => 0x11, # sleb128
|
||||
plus_uconst => 0x23, # uleb128
|
||||
lit0 => 0x30, # add 0-31 to opcode
|
||||
reg0 => 0x50, # add 0-31 to opcode
|
||||
breg0 => 0x70, # add 0-31 to opcole, sleb128
|
||||
regx => 0x90, # uleb28
|
||||
fbreg => 0x91, # sleb128
|
||||
bregx => 0x92, # uleb128, sleb128
|
||||
piece => 0x93, # uleb128
|
||||
);
|
||||
|
||||
# Following constants are defined in x86_64 ABI supplement, for
|
||||
# example avaiable at https://www.uclibc.org/docs/psABI-x86_64.pdf,
|
||||
# see section 3.7 "Stack Unwind Algorithm".
|
||||
my %DW_reg_idx = (
|
||||
"%rax"=>0, "%rdx"=>1, "%rcx"=>2, "%rbx"=>3,
|
||||
"%rsi"=>4, "%rdi"=>5, "%rbp"=>6, "%rsp"=>7,
|
||||
"%r8" =>8, "%r9" =>9, "%r10"=>10, "%r11"=>11,
|
||||
"%r12"=>12, "%r13"=>13, "%r14"=>14, "%r15"=>15
|
||||
);
|
||||
|
||||
my ($cfa_reg, $cfa_rsp);
|
||||
|
||||
# [us]leb128 format is variable-length integer representation base
|
||||
# 2^128, with most significant bit of each byte being 0 denoting
|
||||
# *last* most significat digit. See "Variable Length Data" in the
|
||||
# DWARF specification, numbered 7.6 at least in versions 3 and 4.
|
||||
sub sleb128 {
|
||||
use integer; # get right shift extend sign
|
||||
|
||||
my $val = shift;
|
||||
my $sign = ($val < 0) ? -1 : 0;
|
||||
my @ret = ();
|
||||
|
||||
while(1) {
|
||||
push @ret, $val&0x7f;
|
||||
|
||||
# see if remaining bits are same and equal to most
|
||||
# significant bit of the current digit, if so, it's
|
||||
# last digit...
|
||||
last if (($val>>6) == $sign);
|
||||
|
||||
@ret[-1] |= 0x80;
|
||||
$val >>= 7;
|
||||
}
|
||||
|
||||
return @ret;
|
||||
}
|
||||
sub uleb128 {
|
||||
my $val = shift;
|
||||
my @ret = ();
|
||||
|
||||
while(1) {
|
||||
push @ret, $val&0x7f;
|
||||
|
||||
# see if it's last significant digit...
|
||||
last if (($val >>= 7) == 0);
|
||||
|
||||
@ret[-1] |= 0x80;
|
||||
}
|
||||
|
||||
return @ret;
|
||||
}
|
||||
sub const {
|
||||
my $val = shift;
|
||||
|
||||
if ($val >= 0 && $val < 32) {
|
||||
return ($DW_OP_complex{lit0}+$val);
|
||||
}
|
||||
return ($DW_OP_complex{consts}, sleb128($val));
|
||||
}
|
||||
sub reg {
|
||||
my $val = shift;
|
||||
|
||||
return if ($val !~ m/^(%r\w+)(?:([\+\-])((?:0x)?[0-9a-f]+))?/);
|
||||
|
||||
my $reg = $DW_reg_idx{$1};
|
||||
my $off = eval ("0 $2 $3");
|
||||
|
||||
return (($DW_OP_complex{breg0} + $reg), sleb128($off));
|
||||
# Yes, we use DW_OP_bregX+0 to push register value and not
|
||||
# DW_OP_regX, because latter would require even DW_OP_piece,
|
||||
# which would be a waste under the circumstances. If you have
|
||||
# to use DWP_OP_reg, use "regx:N"...
|
||||
}
|
||||
sub cfa_expression {
|
||||
my $line = shift;
|
||||
my @ret;
|
||||
|
||||
foreach my $token (split(/,\s*/,$line)) {
|
||||
if ($token =~ /^%r/) {
|
||||
push @ret,reg($token);
|
||||
} elsif ($token =~ /(\w+):(\-?(?:0x)?[0-9a-f]+)(U?)/i) {
|
||||
my $i = 1*eval($2);
|
||||
push @ret,$DW_OP_complex{$1}, ($3 ? uleb128($i) : sleb128($i));
|
||||
} elsif (my $i = 1*eval($token) or $token eq "0") {
|
||||
if ($token =~ /^\+/) {
|
||||
push @ret,$DW_OP_complex{plus_uconst},uleb128($i);
|
||||
} else {
|
||||
push @ret,const($i);
|
||||
}
|
||||
} else {
|
||||
push @ret,$DW_OP_simple{$token};
|
||||
}
|
||||
}
|
||||
|
||||
# Finally we return DW_CFA_def_cfa_expression, 15, followed by
|
||||
# length of the expression and of course the expression itself.
|
||||
return (15,scalar(@ret),@ret);
|
||||
}
|
||||
sub re {
|
||||
my ($class, $line) = @_;
|
||||
my $self = {};
|
||||
my $ret;
|
||||
|
||||
if ($$line =~ s/^\s*\.cfi_(\w+)\s+//) {
|
||||
bless $self,$class;
|
||||
$ret = $self;
|
||||
undef $self->{value};
|
||||
my $dir = $1;
|
||||
|
||||
SWITCH: for ($dir) {
|
||||
# What is $cfa_rsp? Effectively it's difference between %rsp
|
||||
# value and current CFA, Canonical Frame Address, which is
|
||||
# why it starts with -8. Recall that CFA is top of caller's
|
||||
# stack...
|
||||
/startproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", -8); last; };
|
||||
/endproc/ && do { ($cfa_reg, $cfa_rsp) = ("%rsp", 0); last; };
|
||||
/def_cfa_register/
|
||||
&& do { $cfa_reg = $$line; last; };
|
||||
/def_cfa_offset/
|
||||
&& do { $cfa_rsp = -1*eval($$line) if ($cfa_reg eq "%rsp");
|
||||
last;
|
||||
};
|
||||
/adjust_cfa_offset/
|
||||
&& do { $cfa_rsp -= 1*eval($$line) if ($cfa_reg eq "%rsp");
|
||||
last;
|
||||
};
|
||||
/def_cfa/ && do { if ($$line =~ /(%r\w+)\s*,\s*(\.+)/) {
|
||||
$cfa_reg = $1;
|
||||
$cfa_rsp = -1*eval($2) if ($cfa_reg eq "%rsp");
|
||||
}
|
||||
last;
|
||||
};
|
||||
/push/ && do { $dir = undef;
|
||||
$cfa_rsp -= 8;
|
||||
if ($cfa_reg eq "%rsp") {
|
||||
$self->{value} = ".cfi_adjust_cfa_offset\t8\n";
|
||||
}
|
||||
$self->{value} .= ".cfi_offset\t$$line,$cfa_rsp";
|
||||
last;
|
||||
};
|
||||
/pop/ && do { $dir = undef;
|
||||
$cfa_rsp += 8;
|
||||
if ($cfa_reg eq "%rsp") {
|
||||
$self->{value} = ".cfi_adjust_cfa_offset\t-8\n";
|
||||
}
|
||||
$self->{value} .= ".cfi_restore\t$$line";
|
||||
last;
|
||||
};
|
||||
/cfa_expression/
|
||||
&& do { $dir = undef;
|
||||
$self->{value} = ".cfi_escape\t" .
|
||||
join(",", map(sprintf("0x%02x", $_),
|
||||
cfa_expression($$line)));
|
||||
last;
|
||||
};
|
||||
}
|
||||
|
||||
$self->{value} = ".cfi_$dir\t$$line" if ($dir);
|
||||
|
||||
$$line = "";
|
||||
}
|
||||
|
||||
return $ret;
|
||||
}
|
||||
sub out {
|
||||
my $self = shift;
|
||||
return ($elf ? $self->{value} : undef);
|
||||
}
|
||||
}
|
||||
{ package directive; # pick up directives, which start with .
|
||||
sub re {
|
||||
my ($class, $line) = @_;
|
||||
|
@ -472,6 +706,9 @@ my %globals;
|
|||
my $ret;
|
||||
my $dir;
|
||||
|
||||
# chain-call to cfi_directive
|
||||
$ret = cfi_directive->re($line) and return $ret;
|
||||
|
||||
if ($$line =~ /^\s*(\.\w+)/) {
|
||||
bless $self,$class;
|
||||
$dir = $1;
|
||||
|
|
Loading…
Reference in a new issue