diff --git a/CHANGES b/CHANGES index 4197e739e1..ab334b87e1 100644 --- a/CHANGES +++ b/CHANGES @@ -32,7 +32,7 @@ [Richard Levitte] *) New function BN_mod_sqrt for computing square roots modulo a prime - (Tonelli-Shanks algorithm). + (Tonelli-Shanks algorithm unless p == 3 (mod 4) or p == 5 (mod 8)). [Lenka Fibikova , Bodo Moeller] *) Store verify_result within SSL_SESSION also for client side to diff --git a/crypto/bn/bn_sqrt.c b/crypto/bn/bn_sqrt.c index 2a72c189cb..a54d9d2919 100644 --- a/crypto/bn/bn_sqrt.c +++ b/crypto/bn/bn_sqrt.c @@ -93,6 +93,20 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) return(NULL); } + if (BN_is_zero(a) || BN_is_one(a)) + { + if (ret == NULL) + ret = BN_new(); + if (ret == NULL) + goto end; + if (!BN_set_word(ret, BN_is_one(a))) + { + BN_free(ret); + return NULL; + } + return ret; + } + #if 0 /* if BN_mod_sqrt is used with correct input, this just wastes time */ r = BN_kronecker(a, p, ctx); if (r < -1) return NULL; @@ -119,7 +133,9 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) e = 1; while (!BN_is_bit_set(p, e)) e++; - if (!BN_rshift(q, p, e)) goto end; + if (e > 2) + /* we don't need this q if e = 1 or 2 */ + if (!BN_rshift(q, p, e)) goto end; q->neg = 0; if (e == 1) @@ -129,16 +145,74 @@ BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) * directly by modular exponentiation. * We have * 2 * (p+1)/4 == 1 (mod (p-1)/2), - * so we can use exponent (p+1)/4, i.e. (q+1)/2. + * so we can use exponent (p+1)/4, i.e. (p-3)/4 + 1. */ - if (!BN_add_word(q,1)) goto end; - if (!BN_rshift1(q,q)) goto end; + if (!BN_rshift(q, p, 2)) goto end; + if (!BN_add_word(q, 1)) goto end; if (!BN_mod_exp(ret, a, q, p, ctx)) goto end; err = 0; goto end; } - /* e > 1, so we really have to use the Tonelli/Shanks algorithm. + if (e == 2) + { + /* p == 5 (mod 8) + * + * In this case 2 is always a non-square since + * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. + * So if a really is a square, then 2*a is a non-square. + * Thus for + * b := (2*a)^((p-5)/8), + * i := (2*a)*b^2 + * we have + * i^2 = (2*a)^((1 + (p-5)/4)*2) + * = (2*a)^((p-1)/2) + * = -1; + * so if we set + * x := a*b*(i-1), + * then + * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) + * = a^2 * b^2 * (-2*i) + * = a*(-i)*(2*a*b^2) + * = a*(-i)*i + * = a. + * + * (This is due to A.O.L. Atkin, + * , + * November 1992.) + */ + + /* make sure that a is reduced modulo p */ + if (a->neg || BN_ucmp(a, p) >= 0) + { + if (!BN_nnmod(x, a, p, ctx)) goto end; + a = x; /* use x as temporary variable */ + } + + /* t := 2*a */ + if (!BN_mod_lshift1_quick(t, a, p)) goto end; + + /* b := (2*a)^((p-5)/8) */ + if (!BN_rshift(q, p, 3)) goto end; + if (!BN_mod_exp(b, t, q, p, ctx)) goto end; + + /* y := b^2 */ + if (!BN_mod_sqr(y, b, p, ctx)) goto end; + + /* t := (2*a)*b^2 - 1*/ + if (!BN_mod_mul(t, t, y, p, ctx)) goto end; + if (!BN_sub_word(t, 1)) goto end; /* cannot become negative */ + + /* x = a*b*t */ + if (!BN_mod_mul(x, a, b, p, ctx)) goto end; + if (!BN_mod_mul(x, x, t, p, ctx)) goto end; + + if (!BN_copy(ret, x)) goto end; + err = 0; + goto end; + } + + /* e > 2, so we really have to use the Tonelli/Shanks algorithm. * First, find some y that is not a square. */ i = 2; do