make EC_GROUP_do_inverse_ord more robust

Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6116)
This commit is contained in:
Billy Brumley 2018-04-27 17:45:51 +03:00 committed by Matt Caswell
parent 9186016582
commit c11d372b3b
2 changed files with 75 additions and 35 deletions

View file

@ -1017,13 +1017,80 @@ int ec_group_simple_order_bits(const EC_GROUP *group)
return BN_num_bits(group->order);
}
static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r,
BIGNUM *x, BN_CTX *ctx)
{
BIGNUM *exp = NULL;
BN_CTX *new_ctx = NULL;
int ret = 0;
if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL)
return 0;
BN_CTX_start(ctx);
exp = BN_CTX_get(ctx);
if (exp == NULL)
goto err;
/* Check if optimized inverse is implemented */
if (group->mont_data != NULL) {
/*-
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!BN_set_word(exp, 2))
goto err;
if (!BN_sub(exp, group->order, exp))
goto err;
/*-
* Exponent X is public.
* No need for scatter-gather or BN_FLG_CONSTTIME.
*/
if (!BN_mod_exp_mont(r, x, exp, group->order, ctx, group->mont_data))
goto err;
/* Inverse of zero doesn't exist. Let the fallback catch it. */
if (BN_is_zero(r))
ret = 0;
else
ret = 1;
}
/*-
* Fallback to classic inverse, blinded.
* BN_FLG_CONSTTIME is a don't care here.
*/
if (ret == 0) {
do {
if (!BN_priv_rand_range(exp, group->order))
goto err;
} while (BN_is_zero(exp));
/* r := x * exp */
if (!BN_mod_mul(r, x, exp, group->order, ctx))
goto err;
/* r := 1/(x * exp) */
if (!BN_mod_inverse(r, r, group->order, ctx))
goto err;
/* r := exp/(x * exp) = 1/x */
if (!BN_mod_mul(r, r, exp, group->order, ctx))
goto err;
ret = 1;
}
err:
BN_CTX_end(ctx);
BN_CTX_free(new_ctx);
return ret;
}
int EC_GROUP_do_inverse_ord(const EC_GROUP *group, BIGNUM *res,
BIGNUM *x, BN_CTX *ctx)
{
if (group->meth->field_inverse_mod_ord != NULL)
return group->meth->field_inverse_mod_ord(group, res, x, ctx);
else
return 0;
return ec_field_inverse_mod_ord(group, res, x, ctx);
}
/*-

View file

@ -136,34 +136,10 @@ static int ecdsa_sign_setup(EC_KEY *eckey, BN_CTX *ctx_in,
}
while (BN_is_zero(r));
/* Check if optimized inverse is implemented */
if (EC_GROUP_do_inverse_ord(group, k, k, ctx) == 0) {
/* compute the inverse of k */
if (group->mont_data != NULL) {
/*
* We want inverse in constant time, therefore we utilize the fact
* order must be prime and use Fermats Little Theorem instead.
*/
if (!BN_set_word(X, 2)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
if (!BN_mod_sub(X, order, X, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
BN_set_flags(X, BN_FLG_CONSTTIME);
if (!BN_mod_exp_mont_consttime(k, k, X, order, ctx,
group->mont_data)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
} else {
if (!BN_mod_inverse(k, k, order, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
}
/* compute the inverse of k */
if (!EC_GROUP_do_inverse_ord(group, k, k, ctx)) {
ECerr(EC_F_ECDSA_SIGN_SETUP, ERR_R_BN_LIB);
goto err;
}
/* clear old values if necessary */
@ -449,12 +425,9 @@ int ossl_ecdsa_verify_sig(const unsigned char *dgst, int dgst_len,
goto err;
}
/* calculate tmp1 = inv(S) mod order */
/* Check if optimized inverse is implemented */
if (EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx) == 0) {
if (!BN_mod_inverse(u2, sig->s, order, ctx)) {
ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
goto err;
}
if (!EC_GROUP_do_inverse_ord(group, u2, sig->s, ctx)) {
ECerr(EC_F_OSSL_ECDSA_VERIFY_SIG, ERR_R_BN_LIB);
goto err;
}
/* digest -> m */
i = BN_num_bits(order);