Fix reseeding issues of the public RAND_DRBG

Reseeding is handled very differently by the classic RAND_METHOD API
and the new RAND_DRBG api. These differences led to some problems when
the new RAND_DRBG was made the default OpenSSL RNG. In particular,
RAND_add() did not work as expected anymore. These issues are discussed
on the thread '[openssl-dev] Plea for a new public OpenSSL RNG API'
and in Pull Request #4328. This commit fixes the mentioned issues,
introducing the following changes:

- Replace the fixed size RAND_BYTES_BUFFER by a new RAND_POOL API which
  facilitates collecting entropy by the get_entropy() callback.
- Don't use RAND_poll()/RAND_add() for collecting entropy from the
  get_entropy() callback anymore. Instead, replace RAND_poll() by
  RAND_POOL_acquire_entropy().
- Add a new function rand_drbg_restart() which tries to get the DRBG
  in an instantiated state by all means, regardless of the current
  state (uninstantiated, error, ...) the DRBG is in. If the caller
  provides entropy or additional input, it will be used for reseeding.
- Restore the original documented behaviour of RAND_add() and RAND_poll()
  (namely to reseed the DRBG immediately) by a new implementation based
  on rand_drbg_restart().
- Add automatic error recovery from temporary failures of the entropy
  source to RAND_DRBG_generate() using the rand_drbg_restart() function.

Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
(Merged from https://github.com/openssl/openssl/pull/4328)
This commit is contained in:
Dr. Matthias St. Pierre 2017-08-31 23:16:22 +02:00 committed by Ben Kaduk
parent af1d638730
commit c16de9d832
19 changed files with 1047 additions and 342 deletions

View file

@ -876,14 +876,21 @@ PKCS7_F_PKCS7_SIMPLE_SMIMECAP:119:PKCS7_simple_smimecap
PKCS7_F_PKCS7_VERIFY:117:PKCS7_verify
RAND_F_DRBG_BYTES:101:drbg_bytes
RAND_F_DRBG_GET_ENTROPY:105:drbg_get_entropy
RAND_F_DRBG_SETUP:117:drbg_setup
RAND_F_GET_ENTROPY:106:get_entropy
RAND_F_RAND_BYTES:100:RAND_bytes
RAND_F_RAND_DRBG_GENERATE:107:RAND_DRBG_generate
RAND_F_RAND_DRBG_INSTANTIATE:108:RAND_DRBG_instantiate
RAND_F_RAND_DRBG_NEW:109:RAND_DRBG_new
RAND_F_RAND_DRBG_RESEED:110:RAND_DRBG_reseed
RAND_F_RAND_DRBG_RESTART:102:rand_drbg_restart
RAND_F_RAND_DRBG_SET:104:RAND_DRBG_set
RAND_F_RAND_LOAD_FILE:111:RAND_load_file
RAND_F_RAND_POOL_ADD:103:RAND_POOL_add
RAND_F_RAND_POOL_ADD_BEGIN:113:RAND_POOL_add_begin
RAND_F_RAND_POOL_ADD_END:114:RAND_POOL_add_end
RAND_F_RAND_POOL_BYTES_NEEDED:115:RAND_POOL_bytes_needed
RAND_F_RAND_POOL_NEW:116:RAND_POOL_new
RAND_F_RAND_WRITE_FILE:112:RAND_write_file
RSA_F_CHECK_PADDING_MD:140:check_padding_md
RSA_F_ENCODE_PKCS1:146:encode_pkcs1
@ -2137,13 +2144,18 @@ PKCS7_R_WRONG_CONTENT_TYPE:113:wrong content type
PKCS7_R_WRONG_PKCS7_TYPE:114:wrong pkcs7 type
RAND_R_ADDITIONAL_INPUT_TOO_LONG:102:additional input too long
RAND_R_ALREADY_INSTANTIATED:103:already instantiated
RAND_R_ARGUMENT_OUT_OF_RANGE:105:argument out of range
RAND_R_CANNOT_OPEN_FILE:121:Cannot open file
RAND_R_DRBG_NOT_INITIALISED:104:drbg not initialised
RAND_R_ENTROPY_INPUT_TOO_LONG:106:entropy input too long
RAND_R_ENTROPY_OUT_OF_RANGE:124:entropy out of range
RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED:127:error entropy pool was ignored
RAND_R_ERROR_INITIALISING_DRBG:107:error initialising drbg
RAND_R_ERROR_INSTANTIATING_DRBG:108:error instantiating drbg
RAND_R_ERROR_RETRIEVING_ADDITIONAL_INPUT:109:error retrieving additional input
RAND_R_ERROR_RETRIEVING_ENTROPY:110:error retrieving entropy
RAND_R_ERROR_RETRIEVING_NONCE:111:error retrieving nonce
RAND_R_FAILED_TO_CREATE_LOCK:126:failed to create lock
RAND_R_FUNC_NOT_IMPLEMENTED:101:Function not implemented
RAND_R_FWRITE_ERROR:123:Error writing file
RAND_R_GENERATE_ERROR:112:generate error
@ -2153,6 +2165,7 @@ RAND_R_NOT_A_REGULAR_FILE:122:Not a regular file
RAND_R_NOT_INSTANTIATED:115:not instantiated
RAND_R_PERSONALISATION_STRING_TOO_LONG:116:personalisation string too long
RAND_R_PRNG_NOT_SEEDED:100:PRNG not seeded
RAND_R_RANDOM_POOL_OVERFLOW:125:random pool overflow
RAND_R_REQUEST_TOO_LARGE_FOR_DRBG:117:request too large for drbg
RAND_R_RESEED_ERROR:118:reseed error
RAND_R_SELFTEST_FAILURE:119:selftest failure

View file

@ -18,5 +18,5 @@
#include <openssl/rand.h>
void rand_cleanup_int(void);
void rand_cleanup_drbg_int(void);
void rand_drbg_cleanup_int(void);
void rand_fork(void);

View file

@ -503,7 +503,7 @@ void OPENSSL_cleanup(void)
* obj_cleanup_int() must be called last
*/
rand_cleanup_int();
rand_cleanup_drbg_int();
rand_drbg_cleanup_int();
conf_modules_free_int();
#ifndef OPENSSL_NO_ENGINE
engine_cleanup_int();

View file

@ -18,6 +18,9 @@
static RAND_DRBG rand_drbg; /* The default global DRBG. */
static RAND_DRBG priv_drbg; /* The global private-key DRBG. */
/* NIST SP 800-90A DRBG recommends the use of a personalization string. */
static const char ossl_pers_string[] = "OpenSSL NIST SP 800-90A DRBG";
/*
* Support framework for NIST SP 800-90A DRBG, AES-CTR mode.
* The RAND_DRBG is OpenSSL's pointer to an instance of the DRBG.
@ -30,7 +33,9 @@ static RAND_DRBG priv_drbg; /* The global private-key DRBG. */
* a much bigger deal than just re-setting an allocated resource.)
*/
static CRYPTO_ONCE rand_init_drbg = CRYPTO_ONCE_STATIC_INIT;
static CRYPTO_ONCE rand_drbg_init = CRYPTO_ONCE_STATIC_INIT;
static int drbg_setup(RAND_DRBG *drbg, const char *name);
/*
* Set/initialize |drbg| to be of type |nid|, with optional |flags|.
@ -76,15 +81,14 @@ RAND_DRBG *RAND_DRBG_new(int type, unsigned int flags, RAND_DRBG *parent)
RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
drbg->size = RANDOMNESS_NEEDED;
drbg->fork_count = rand_fork_count;
drbg->parent = parent;
if (RAND_DRBG_set(drbg, type, flags) < 0)
goto err;
if (parent != NULL) {
if (!RAND_DRBG_set_callbacks(drbg, drbg_entropy_from_parent,
drbg_release_entropy,
if (!RAND_DRBG_set_callbacks(drbg, rand_drbg_get_entropy,
rand_drbg_cleanup_entropy,
NULL, NULL))
goto err;
}
@ -101,8 +105,7 @@ err:
*/
void RAND_DRBG_free(RAND_DRBG *drbg)
{
/* The global DRBG is free'd by rand_cleanup_drbg_int() */
if (drbg == NULL || drbg == &rand_drbg)
if (drbg == NULL)
return;
ctr_uninstantiate(drbg);
@ -136,7 +139,8 @@ int RAND_DRBG_instantiate(RAND_DRBG *drbg,
if (drbg->get_entropy != NULL)
entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen);
if (entropylen < drbg->min_entropylen || entropylen > drbg->max_entropylen) {
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
@ -145,7 +149,8 @@ int RAND_DRBG_instantiate(RAND_DRBG *drbg,
noncelen = drbg->get_nonce(drbg, &nonce, drbg->strength / 2,
drbg->min_noncelen, drbg->max_noncelen);
if (noncelen < drbg->min_noncelen || noncelen > drbg->max_noncelen) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_NONCE);
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
@ -164,6 +169,15 @@ end:
drbg->cleanup_entropy(drbg, entropy, entropylen);
if (nonce != NULL && drbg->cleanup_nonce!= NULL )
drbg->cleanup_nonce(drbg, nonce, noncelen);
if (drbg->pool != NULL) {
if (drbg->state == DRBG_READY) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED);
drbg->state = DRBG_ERROR;
}
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
}
if (drbg->state == DRBG_READY)
return 1;
return 0;
@ -182,7 +196,7 @@ int RAND_DRBG_uninstantiate(RAND_DRBG *drbg)
}
/*
* Mix in the specified data to reseed |drbg|.
* Reseed |drbg|, mixing in the specified data
*/
int RAND_DRBG_reseed(RAND_DRBG *drbg,
const unsigned char *adin, size_t adinlen)
@ -210,7 +224,8 @@ int RAND_DRBG_reseed(RAND_DRBG *drbg,
if (drbg->get_entropy != NULL)
entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropylen, drbg->max_entropylen);
if (entropylen < drbg->min_entropylen || entropylen > drbg->max_entropylen) {
if (entropylen < drbg->min_entropylen
|| entropylen > drbg->max_entropylen) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
@ -228,15 +243,123 @@ end:
return 0;
}
/*
* Restart |drbg|, using the specified entropy or additional input
*
* Tries its best to get the drbg instantiated by all means,
* regardless of its current state.
*
* Optionally, a |buffer| of |len| random bytes can be passed,
* which is assumed to contain at least |entropy| bits of entropy.
*
* If |entropy| > 0, the buffer content is used as entropy input.
*
* If |entropy| == 0, the buffer content is used as additional input
*
* Returns 1 on success, 0 on failure.
*
* This function is used internally only.
*/
int rand_drbg_restart(RAND_DRBG *drbg,
const unsigned char *buffer, size_t len, size_t entropy)
{
int reseeded = 0;
const unsigned char *adin = NULL;
size_t adinlen = 0;
if (drbg->pool != NULL) {
RANDerr(RAND_F_RAND_DRBG_RESTART, ERR_R_INTERNAL_ERROR);
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
}
if (buffer != NULL) {
if (entropy > 0) {
if (drbg->max_entropylen < len) {
RANDerr(RAND_F_RAND_DRBG_RESTART,
RAND_R_ENTROPY_INPUT_TOO_LONG);
return 0;
}
if (entropy > 8 * len) {
RANDerr(RAND_F_RAND_DRBG_RESTART, RAND_R_ENTROPY_OUT_OF_RANGE);
return 0;
}
/* will be picked up by the rand_drbg_get_entropy() callback */
drbg->pool = RAND_POOL_new(entropy, len, len);
if (drbg->pool == NULL)
return 0;
RAND_POOL_add(drbg->pool, buffer, len, entropy);
} else {
if (drbg->max_adinlen < len) {
RANDerr(RAND_F_RAND_DRBG_RESTART,
RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
adin = buffer;
adinlen = len;
}
}
/* repair error state */
if (drbg->state == DRBG_ERROR)
RAND_DRBG_uninstantiate(drbg);
/* repair uninitialized state */
if (drbg->state == DRBG_UNINITIALISED) {
drbg_setup(drbg, NULL);
/* already reseeded. prevent second reseeding below */
reseeded = (drbg->state == DRBG_READY);
}
/* refresh current state if entropy or additional input has been provided */
if (drbg->state == DRBG_READY) {
if (adin != NULL) {
/*
* mix in additional input without reseeding
*
* Similar to RAND_DRBG_reseed(), but the provided additional
* data |adin| is mixed into the current state without pulling
* entropy from the trusted entropy source using get_entropy().
* This is not a reseeding in the strict sense of NIST SP 800-90A.
*/
ctr_reseed(drbg, adin, adinlen, NULL, 0);
} else if (reseeded == 0) {
/* do a full reseeding if it has not been done yet above */
RAND_DRBG_reseed(drbg, NULL, 0);
}
}
/* check whether a given entropy pool was cleared properly during reseed */
if (drbg->pool != NULL) {
drbg->state = DRBG_ERROR;
RANDerr(RAND_F_RAND_DRBG_RESTART, ERR_R_INTERNAL_ERROR);
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
return 0;
}
return drbg->state == DRBG_READY;
}
/*
* Generate |outlen| bytes into the buffer at |out|. Reseed if we need
* to or if |prediction_resistance| is set. Additional input can be
* sent in |adin| and |adinlen|.
*
* Returns 1 on success, 0 on failure.
*
*/
int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen,
int prediction_resistance,
const unsigned char *adin, size_t adinlen)
{
if (drbg->state != DRBG_READY) {
/* try to recover from previous errors */
rand_drbg_restart(drbg, NULL, 0, 0);
if (drbg->state == DRBG_ERROR) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_IN_ERROR_STATE);
return 0;
@ -245,6 +368,8 @@ int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen,
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_NOT_INSTANTIATED);
return 0;
}
}
if (outlen > drbg->max_request) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG);
return 0;
@ -285,21 +410,55 @@ int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen,
}
/*
* Set the callbacks for entropy and nonce. We currently don't use
* the nonce; that's mainly for the KATs
* Set the RAND_DRBG callbacks for obtaining entropy and nonce.
*
* In the following, the signature and the semantics of the
* get_entropy() and cleanup_entropy() callbacks are explained.
*
* GET_ENTROPY
*
* size_t get_entropy(RAND_DRBG *ctx,
* unsigned char **pout,
* int entropy,
* size_t min_len, size_t max_len);
*
* This is a request to allocate and fill a buffer of size
* |min_len| <= size <= |max_len| (in bytes) which contains
* at least |entropy| bits of randomness. The buffer's address is
* to be returned in |*pout| and the number of collected
* randomness bytes (which may be less than the allocated size
* of the buffer) as return value.
*
* If the callback fails to acquire at least |entropy| bits of
* randomness, it shall return a buffer length of 0.
*
* CLEANUP_ENTROPY
*
* void cleanup_entropy(RAND_DRBG *ctx,
* unsigned char *out, size_t outlen);
*
* A request to clear and free the buffer allocated by get_entropy().
* The values |out| and |outlen| are expected to be the random buffer's
* address and length, as returned by the get_entropy() callback.
*
* GET_NONCE, CLEANUP_NONCE
*
* Signature and semantics of the get_nonce() and cleanup_nonce()
* callbacks are analogous to get_entropy() and cleanup_entropy().
* Currently, the nonce is used only for the known answer tests.
*/
int RAND_DRBG_set_callbacks(RAND_DRBG *drbg,
RAND_DRBG_get_entropy_fn cb_get_entropy,
RAND_DRBG_cleanup_entropy_fn cb_cleanup_entropy,
RAND_DRBG_get_nonce_fn cb_get_nonce,
RAND_DRBG_cleanup_nonce_fn cb_cleanup_nonce)
RAND_DRBG_get_entropy_fn get_entropy,
RAND_DRBG_cleanup_entropy_fn cleanup_entropy,
RAND_DRBG_get_nonce_fn get_nonce,
RAND_DRBG_cleanup_nonce_fn cleanup_nonce)
{
if (drbg->state != DRBG_UNINITIALISED)
return 0;
drbg->get_entropy = cb_get_entropy;
drbg->cleanup_entropy = cb_cleanup_entropy;
drbg->get_nonce = cb_get_nonce;
drbg->cleanup_nonce = cb_cleanup_nonce;
drbg->get_entropy = get_entropy;
drbg->cleanup_entropy = cleanup_entropy;
drbg->get_nonce = get_nonce;
drbg->cleanup_nonce = cleanup_nonce;
return 1;
}
@ -334,23 +493,40 @@ void *RAND_DRBG_get_ex_data(const RAND_DRBG *drbg, int idx)
*/
/*
* Creates a global DRBG with default settings.
* Initializes the DRBG with default settings.
* For global DRBGs a global lock is created with the given name
* Returns 1 on success, 0 on failure
*/
static int setup_drbg(RAND_DRBG *drbg, const char *name)
static int drbg_setup(RAND_DRBG *drbg, const char *name)
{
int ret = 1;
if (name != NULL) {
if (drbg->lock != NULL) {
RANDerr(RAND_F_DRBG_SETUP, ERR_R_INTERNAL_ERROR);
return 0;
}
drbg->lock = CRYPTO_THREAD_glock_new(name);
ret &= drbg->lock != NULL;
drbg->size = RANDOMNESS_NEEDED;
drbg->secure = CRYPTO_secure_malloc_initialized();
/* If you change these parameters, see RANDOMNESS_NEEDED */
if (drbg->lock == NULL) {
RANDerr(RAND_F_DRBG_SETUP, RAND_R_FAILED_TO_CREATE_LOCK);
return 0;
}
}
ret &= RAND_DRBG_set(drbg,
NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF) == 1;
ret &= RAND_DRBG_set_callbacks(drbg, drbg_entropy_from_system,
drbg_release_entropy, NULL, NULL) == 1;
ret &= RAND_DRBG_instantiate(drbg, NULL, 0) == 1;
RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF) == 1;
ret &= RAND_DRBG_set_callbacks(drbg, rand_drbg_get_entropy,
rand_drbg_cleanup_entropy, NULL, NULL) == 1;
/*
* Ignore instantiation error so support just-in-time instantiation.
*
* The state of the drbg will be checked in RAND_DRBG_generate() and
* an automatic recovery is attempted.
*/
RAND_DRBG_instantiate(drbg,
(const unsigned char *) ossl_pers_string,
sizeof(ossl_pers_string) - 1);
return ret;
}
@ -358,30 +534,31 @@ static int setup_drbg(RAND_DRBG *drbg, const char *name)
* Initialize the global DRBGs on first use.
* Returns 1 on success, 0 on failure.
*/
DEFINE_RUN_ONCE_STATIC(do_rand_init_drbg)
DEFINE_RUN_ONCE_STATIC(do_rand_drbg_init)
{
int ret = 1;
ret &= setup_drbg(&rand_drbg, "rand_drbg");
ret &= setup_drbg(&priv_drbg, "priv_drbg");
ret &= drbg_setup(&rand_drbg, "rand_drbg");
ret &= drbg_setup(&priv_drbg, "priv_drbg");
return ret;
}
/* Clean up a DRBG and free it */
static void free_drbg(RAND_DRBG *drbg)
/* Cleans up the given global DRBG */
static void drbg_cleanup(RAND_DRBG *drbg)
{
CRYPTO_THREAD_lock_free(drbg->lock);
RAND_DRBG_uninstantiate(drbg);
}
/* Clean up the global DRBGs before exit */
void rand_cleanup_drbg_int(void)
void rand_drbg_cleanup_int(void)
{
free_drbg(&rand_drbg);
free_drbg(&priv_drbg);
drbg_cleanup(&rand_drbg);
drbg_cleanup(&priv_drbg);
}
/* Implements the default OpenSSL RAND_bytes() method */
static int drbg_bytes(unsigned char *out, int count)
{
int ret = 0;
@ -410,34 +587,44 @@ err:
return ret;
}
/* Implements the default OpenSSL RAND_add() method */
static int drbg_add(const void *buf, int num, double randomness)
{
unsigned char *in = (unsigned char *)buf;
unsigned char *out, *end;
int ret = 0;
RAND_DRBG *drbg = RAND_DRBG_get0_global();
CRYPTO_THREAD_write_lock(rand_bytes.lock);
out = &rand_bytes.buff[rand_bytes.curr];
end = &rand_bytes.buff[rand_bytes.size];
if (drbg == NULL)
return 0;
/* Copy whatever fits into the end of the buffer. */
for ( ; --num >= 0 && out < end; rand_bytes.curr++)
*out++ = *in++;
if (num < 0 || randomness < 0.0)
return 0;
/* XOR any the leftover. */
while (num > 0) {
for (out = rand_bytes.buff; --num >= 0 && out < end; )
*out++ ^= *in++;
if (randomness > (double)drbg->max_entropylen) {
/*
* The purpose of this check is to bound |randomness| by a
* relatively small value in order to prevent an integer
* overflow when multiplying by 8 in the rand_drbg_restart()
* call below.
*/
return 0;
}
CRYPTO_THREAD_unlock(rand_bytes.lock);
return 1;
CRYPTO_THREAD_write_lock(drbg->lock);
ret = rand_drbg_restart(drbg, buf,
(size_t)(unsigned int)num,
(size_t)(8*randomness));
CRYPTO_THREAD_unlock(drbg->lock);
return ret;
}
/* Implements the default OpenSSL RAND_seed() method */
static int drbg_seed(const void *buf, int num)
{
return drbg_add(buf, num, num);
}
/* Implements the default OpenSSL RAND_status() method */
static int drbg_status(void)
{
int ret;
@ -458,7 +645,7 @@ static int drbg_status(void)
*/
RAND_DRBG *RAND_DRBG_get0_global(void)
{
if (!RUN_ONCE(&rand_init_drbg, do_rand_init_drbg))
if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init))
return NULL;
return &rand_drbg;
@ -470,7 +657,7 @@ RAND_DRBG *RAND_DRBG_get0_global(void)
*/
RAND_DRBG *RAND_DRBG_get0_priv_global(void)
{
if (!RUN_ONCE(&rand_init_drbg, do_rand_init_drbg))
if (!RUN_ONCE(&rand_drbg_init, do_rand_drbg_init))
return NULL;
return &priv_drbg;

View file

@ -341,9 +341,9 @@ int ctr_init(RAND_DRBG *drbg)
AES_set_encrypt_key(df_key, drbg->strength, &ctr->df_ks);
drbg->min_entropylen = ctr->keylen;
drbg->max_entropylen = DRBG_MAX_LENGTH;
drbg->max_entropylen = DRBG_MINMAX_FACTOR * drbg->min_entropylen;
drbg->min_noncelen = drbg->min_entropylen / 2;
drbg->max_noncelen = DRBG_MAX_LENGTH;
drbg->max_noncelen = DRBG_MINMAX_FACTOR * drbg->min_noncelen;
drbg->max_perslen = DRBG_MAX_LENGTH;
drbg->max_adinlen = DRBG_MAX_LENGTH;
} else {

View file

@ -16,6 +16,7 @@
static const ERR_STRING_DATA RAND_str_functs[] = {
{ERR_PACK(ERR_LIB_RAND, RAND_F_DRBG_BYTES, 0), "drbg_bytes"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_DRBG_GET_ENTROPY, 0), "drbg_get_entropy"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_DRBG_SETUP, 0), "drbg_setup"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_GET_ENTROPY, 0), "get_entropy"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_BYTES, 0), "RAND_bytes"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_GENERATE, 0),
@ -24,8 +25,16 @@ static const ERR_STRING_DATA RAND_str_functs[] = {
"RAND_DRBG_instantiate"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_NEW, 0), "RAND_DRBG_new"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_RESEED, 0), "RAND_DRBG_reseed"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_RESTART, 0), "rand_drbg_restart"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_DRBG_SET, 0), "RAND_DRBG_set"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_LOAD_FILE, 0), "RAND_load_file"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ADD, 0), "RAND_POOL_add"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ADD_BEGIN, 0),
"RAND_POOL_add_begin"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_ADD_END, 0), "RAND_POOL_add_end"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_BYTES_NEEDED, 0),
"RAND_POOL_bytes_needed"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_POOL_NEW, 0), "RAND_POOL_new"},
{ERR_PACK(ERR_LIB_RAND, RAND_F_RAND_WRITE_FILE, 0), "RAND_write_file"},
{0, NULL}
};
@ -35,9 +44,17 @@ static const ERR_STRING_DATA RAND_str_reasons[] = {
"additional input too long"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ALREADY_INSTANTIATED),
"already instantiated"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ARGUMENT_OUT_OF_RANGE),
"argument out of range"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_CANNOT_OPEN_FILE), "Cannot open file"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_DRBG_NOT_INITIALISED),
"drbg not initialised"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ENTROPY_INPUT_TOO_LONG),
"entropy input too long"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ENTROPY_OUT_OF_RANGE),
"entropy out of range"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED),
"error entropy pool was ignored"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_INITIALISING_DRBG),
"error initialising drbg"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_INSTANTIATING_DRBG),
@ -48,6 +65,8 @@ static const ERR_STRING_DATA RAND_str_reasons[] = {
"error retrieving entropy"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_ERROR_RETRIEVING_NONCE),
"error retrieving nonce"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_FAILED_TO_CREATE_LOCK),
"failed to create lock"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_FUNC_NOT_IMPLEMENTED),
"Function not implemented"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_FWRITE_ERROR), "Error writing file"},
@ -60,6 +79,8 @@ static const ERR_STRING_DATA RAND_str_reasons[] = {
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PERSONALISATION_STRING_TOO_LONG),
"personalisation string too long"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_PRNG_NOT_SEEDED), "PRNG not seeded"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_RANDOM_POOL_OVERFLOW),
"random pool overflow"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG),
"request too large for drbg"},
{ERR_PACK(ERR_LIB_RAND, 0, RAND_R_RESEED_ERROR), "reseed error"},

View file

@ -17,28 +17,24 @@
# include <openssl/ec.h>
# include "internal/rand.h"
/*
* Amount of randomness (in bytes) we want for initial seeding.
* This is based on the fact that we use AES-128 as the CRBG, and
* that we use the derivation function. If either of those changes,
* (see rand_init() in rand_lib.c), change this.
*/
# define RANDOMNESS_NEEDED 16
/* How many times to read the TSC as a randomness source. */
# define TSC_READ_COUNT 4
/* Maximum amount of randomness to hold in RAND_BYTES_BUFFER. */
# define MAX_RANDOMNESS_HELD (4 * RANDOMNESS_NEEDED)
/* Maximum count allowed in reseeding */
# define MAX_RESEED (1 << 24)
/* How often we call RAND_poll() in drbg_entropy_from_system */
# define RAND_POLL_RETRIES 8
/* Max size of additional input and personalization string. */
# define DRBG_MAX_LENGTH 4096
/* Max size of entropy, addin, etc. Larger than any reasonable value */
# define DRBG_MAX_LENGTH 0x7ffffff0
/*
* The quotient between max_{entropy,nonce}len and min_{entropy,nonce}len
*
* The current factor is large enough that the RAND_POOL can store a
* random input which has a lousy entropy rate of 0.0625 bits per byte.
* This input will be sent through the derivation function which 'compresses'
* the low quality input into a high quality output.
*/
# define DRBG_MINMAX_FACTOR 128
/* DRBG status values */
@ -50,22 +46,6 @@ typedef enum drbg_status_e {
} DRBG_STATUS;
/*
* A buffer of random bytes to be fed as "entropy" into the DRBG. RAND_add()
* adds data to the buffer, and the drbg_entropy_from_system() pulls data from
* the buffer. We have a separate data structure because of the way the
* API is defined; otherwise we'd run into deadlocks (RAND_bytes ->
* RAND_DRBG_generate* -> drbg_entropy_from_system -> RAND_poll -> RAND_add ->
* drbg_add*; the functions with an asterisk lock).
*/
typedef struct rand_bytes_buffer_st {
CRYPTO_RWLOCK *lock;
unsigned char *buff;
size_t size;
size_t curr;
int secure;
} RAND_BYTES_BUFFER;
/*
* The state of a DRBG AES-CTR.
*/
@ -94,12 +74,16 @@ struct rand_drbg_st {
int nid; /* the underlying algorithm */
int fork_count;
unsigned short flags; /* various external flags */
char secure;
/*
* This is a fixed-size buffer, but we malloc to make it a little
* harder to find; a classic security/performance trade-off.
* The random pool is used by RAND_add()/drbg_add() to attach random
* data to the global drbg, such that the rand_drbg_get_entropy() callback
* can pull it during instantiation and reseeding. This is necessary to
* reconcile the different philosophies of the RAND and the RAND_DRBG
* with respect to how randomness is added to the RNG during reseeding
* (see PR #4328).
*/
int size;
RAND_POOL *pool;
/*
* The following parameters are setup by the per-type "init" function.
@ -143,23 +127,24 @@ struct rand_drbg_st {
/* The global RAND method, and the global buffer and DRBG instance. */
extern RAND_METHOD rand_meth;
extern RAND_BYTES_BUFFER rand_bytes;
/* How often we've forked (only incremented in child). */
extern int rand_fork_count;
/* Hardware-based seeding functions. */
void rand_read_tsc(RAND_poll_cb rand_add, void *arg);
int rand_read_cpu(RAND_poll_cb rand_add, void *arg);
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool);
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool);
/* DRBG entropy callbacks. */
void drbg_release_entropy(RAND_DRBG *drbg, unsigned char *out, size_t outlen);
size_t drbg_entropy_from_parent(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len);
size_t drbg_entropy_from_system(RAND_DRBG *drbg,
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len);
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
unsigned char *out, size_t outlen);
/* DRBG helpers */
int rand_drbg_restart(RAND_DRBG *drbg,
const unsigned char *buffer, size_t len, size_t entropy);
/* DRBG functions implementing AES-CTR */
int ctr_init(RAND_DRBG *drbg);

View file

@ -24,7 +24,7 @@ static CRYPTO_RWLOCK *rand_engine_lock;
static CRYPTO_RWLOCK *rand_meth_lock;
static const RAND_METHOD *default_RAND_meth;
static CRYPTO_ONCE rand_init = CRYPTO_ONCE_STATIC_INIT;
RAND_BYTES_BUFFER rand_bytes;
int rand_fork_count;
#ifdef OPENSSL_RAND_SEED_RDTSC
@ -37,12 +37,15 @@ int rand_fork_count;
# error "RDTSC enabled? Should not be possible!"
/*
* Acquire entropy from high-speed clock
*
* Since we get some randomness from the low-order bits of the
* high-speec clock, it can help. But don't return a status since
* it's not sufficient to indicate whether or not the seeding was
* done.
* high-speed clock, it can help.
*
* Returns the total entropy count, if it exceeds the requested
* entropy count. Otherwise, returns an entropy count of 0.
*/
void rand_read_tsc(RAND_poll_cb rand_add, void *arg)
size_t rand_acquire_entropy_from_tsc(RAND_POOL *pool)
{
unsigned char c;
int i;
@ -50,126 +53,141 @@ void rand_read_tsc(RAND_poll_cb rand_add, void *arg)
if ((OPENSSL_ia32cap_P[0] & (1 << 4)) != 0) {
for (i = 0; i < TSC_READ_COUNT; i++) {
c = (unsigned char)(OPENSSL_rdtsc() & 0xFF);
rand_add(arg, &c, 1, 0.5);
RAND_POOL_add(pool, &c, 1, 4);
}
}
return RAND_POOL_entropy_available(pool);
}
#endif
#ifdef OPENSSL_RAND_SEED_RDCPU
size_t OPENSSL_ia32_rdseed_bytes(char *buf, size_t len);
size_t OPENSSL_ia32_rdrand_bytes(char *buf, size_t len);
size_t OPENSSL_ia32_rdseed_bytes(unsigned char *buf, size_t len);
size_t OPENSSL_ia32_rdrand_bytes(unsigned char *buf, size_t len);
extern unsigned int OPENSSL_ia32cap_P[];
int rand_read_cpu(RAND_poll_cb rand_add, void *arg)
/*
* Acquire entropy using Intel-specific cpu instructions
*
* Uses the RDSEED instruction if available, otherwise uses
* RDRAND if available.
*
* For the differences between RDSEED and RDRAND, and why RDSEED
* is the preferred choice, see https://goo.gl/oK3KcN
*
* Returns the total entropy count, if it exceeds the requested
* entropy count. Otherwise, returns an entropy count of 0.
*/
size_t rand_acquire_entropy_from_cpu(RAND_POOL *pool)
{
char buff[RANDOMNESS_NEEDED];
size_t bytes_needed;
unsigned char *buffer;
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
if (bytes_needed > 0) {
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
/* If RDSEED is available, use that. */
if ((OPENSSL_ia32cap_P[2] & (1 << 18)) != 0) {
if (OPENSSL_ia32_rdseed_bytes(buff, sizeof(buff)) == sizeof(buff)) {
rand_add(arg, buff, (int)sizeof(buff), sizeof(buff));
return 1;
}
if (OPENSSL_ia32_rdseed_bytes(buffer, bytes_needed)
== bytes_needed)
return RAND_POOL_add_end(pool,
bytes_needed,
8 * bytes_needed);
}
/* Second choice is RDRAND. */
if ((OPENSSL_ia32cap_P[1] & (1 << (62 - 32))) != 0) {
if (OPENSSL_ia32_rdrand_bytes(buff, sizeof(buff)) == sizeof(buff)) {
rand_add(arg, buff, (int)sizeof(buff), sizeof(buff));
return 1;
if (OPENSSL_ia32_rdrand_bytes(buffer, bytes_needed)
== bytes_needed)
return RAND_POOL_add_end(pool,
bytes_needed,
8 * bytes_needed);
}
return RAND_POOL_add_end(pool, 0, 0);
}
}
return 0;
return RAND_POOL_entropy_available(pool);
}
#endif
/*
* DRBG has two sets of callbacks; we only discuss the "entropy" one
* here. When the DRBG needs additional randomness bits (called entropy
* in the NIST document), it calls the get_entropy callback which fills in
* a pointer and returns the number of bytes. When the DRBG is finished with
* the buffer, it calls the cleanup_entropy callback, with the value of
* the buffer that the get_entropy callback filled in.
* Implements the get_entropy() callback (see RAND_DRBG_set_callbacks())
*
* Get entropy from the system, via RAND_poll if needed. The |entropy|
* is the bits of randomness required, and is expected to fit into a buffer
* of |min_len|..|max__len| size. We assume we're getting high-quality
* randomness from the system, and that |min_len| bytes will do.
* If the DRBG has a parent, then the required amount of entropy input
* is fetched using the parent's RAND_DRBG_generate().
*
* Otherwise, the entropy is polled from the system entropy sources
* using RAND_POOL_acquire_entropy().
*
* If a random pool has been added to the DRBG using RAND_add(), then
* its entropy will be used up first.
*/
size_t drbg_entropy_from_system(RAND_DRBG *drbg,
size_t rand_drbg_get_entropy(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
int i;
unsigned char *randomness;
size_t ret = 0;
size_t entropy_available = 0;
RAND_POOL *pool = RAND_POOL_new(entropy, min_len, max_len);
if (min_len > (size_t)drbg->size) {
/* Should not happen. See comment near RANDOMNESS_NEEDED. */
min_len = drbg->size;
}
randomness = drbg->secure ? OPENSSL_secure_malloc(drbg->size)
: OPENSSL_malloc(drbg->size);
/* If we don't have enough, try to get more. */
CRYPTO_THREAD_write_lock(rand_bytes.lock);
for (i = RAND_POLL_RETRIES; rand_bytes.curr < min_len && --i >= 0; ) {
CRYPTO_THREAD_unlock(rand_bytes.lock);
RAND_poll();
CRYPTO_THREAD_write_lock(rand_bytes.lock);
}
/* Get desired amount, but no more than we have. */
if (min_len > rand_bytes.curr)
min_len = rand_bytes.curr;
if (min_len != 0) {
memcpy(randomness, rand_bytes.buff, min_len);
/* Update amount left and shift it down. */
rand_bytes.curr -= min_len;
if (rand_bytes.curr != 0)
memmove(rand_bytes.buff, &rand_bytes.buff[min_len], rand_bytes.curr);
}
CRYPTO_THREAD_unlock(rand_bytes.lock);
*pout = randomness;
return min_len;
}
size_t drbg_entropy_from_parent(RAND_DRBG *drbg,
unsigned char **pout,
int entropy, size_t min_len, size_t max_len)
{
int st;
unsigned char *randomness;
if (min_len > (size_t)drbg->size) {
/* Should not happen. See comment near RANDOMNESS_NEEDED. */
min_len = drbg->size;
}
randomness = drbg->secure ? OPENSSL_secure_malloc(drbg->size)
: OPENSSL_malloc(drbg->size);
/* Get random from parent, include our state as additional input. */
st = RAND_DRBG_generate(drbg->parent, randomness, min_len, 0,
(unsigned char *)drbg, sizeof(*drbg));
if (st == 0) {
drbg_release_entropy(drbg, randomness, min_len);
if (pool == NULL)
return 0;
}
*pout = randomness;
return min_len;
if (drbg->pool) {
RAND_POOL_add(pool,
RAND_POOL_buffer(drbg->pool),
RAND_POOL_length(drbg->pool),
RAND_POOL_entropy(drbg->pool));
RAND_POOL_free(drbg->pool);
drbg->pool = NULL;
}
void drbg_release_entropy(RAND_DRBG *drbg, unsigned char *out, size_t outlen)
if (drbg->parent) {
size_t bytes_needed = RAND_POOL_bytes_needed(pool, 8);
unsigned char *buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
/* Get entropy from parent, include our state as additional input */
if (RAND_DRBG_generate(drbg->parent,
buffer, bytes_needed,
0,
(unsigned char *)drbg, sizeof(*drbg)) != 0)
bytes = bytes_needed;
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
} else {
/* Get entropy by polling system entropy sources. */
entropy_available = RAND_POOL_acquire_entropy(pool);
}
if (entropy_available > 0) {
ret = RAND_POOL_length(pool);
*pout = RAND_POOL_detach(pool);
}
RAND_POOL_free(pool);
return ret;
}
/*
* Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks())
*
*/
void rand_drbg_cleanup_entropy(RAND_DRBG *drbg,
unsigned char *out, size_t outlen)
{
if (drbg->secure)
OPENSSL_secure_clear_free(out, outlen);
else
OPENSSL_clear_free(out, outlen);
}
void rand_fork()
@ -188,15 +206,6 @@ DEFINE_RUN_ONCE_STATIC(do_rand_init)
rand_meth_lock = CRYPTO_THREAD_glock_new("rand_meth");
ret &= rand_meth_lock != NULL;
rand_bytes.lock = CRYPTO_THREAD_glock_new("rand_bytes");
ret &= rand_bytes.lock != NULL;
rand_bytes.curr = 0;
rand_bytes.size = MAX_RANDOMNESS_HELD;
rand_bytes.secure = CRYPTO_secure_malloc_initialized();
rand_bytes.buff = rand_bytes.secure
? OPENSSL_secure_malloc(rand_bytes.size)
: OPENSSL_malloc(rand_bytes.size);
ret &= rand_bytes.buff != NULL;
return ret;
}
@ -211,25 +220,314 @@ void rand_cleanup_int(void)
CRYPTO_THREAD_lock_free(rand_engine_lock);
#endif
CRYPTO_THREAD_lock_free(rand_meth_lock);
CRYPTO_THREAD_lock_free(rand_bytes.lock);
if (rand_bytes.secure)
OPENSSL_secure_clear_free(rand_bytes.buff, rand_bytes.size);
else
OPENSSL_clear_free(rand_bytes.buff, rand_bytes.size);
}
/*
* RAND_poll_ex() gets a function pointer to call when it has random bytes.
* RAND_poll() sets the function pointer to be a wrapper that calls RAND_add().
* RAND_poll() reseeds the default RNG using random input
*
* The random input is obtained from polling various entropy
* sources which depend on the operating system and are
* configurable via the --with-rand-seed configure option.
*/
static void call_rand_add(void* arg, const void *buf, int num, double r)
{
RAND_add(buf, num, r);
}
int RAND_poll(void)
{
return RAND_poll_ex(call_rand_add, NULL);
int ret = 0;
RAND_POOL *pool = NULL;
const RAND_METHOD *meth = RAND_get_rand_method();
if (meth == RAND_OpenSSL()) {
/* fill random pool and seed the default DRBG */
RAND_DRBG *drbg = RAND_DRBG_get0_global();
if (drbg == NULL)
return 0;
CRYPTO_THREAD_write_lock(drbg->lock);
ret = rand_drbg_restart(drbg, NULL, 0, 0);
CRYPTO_THREAD_unlock(drbg->lock);
return ret;
} else {
/* fill random pool and seed the current legacy RNG */
pool = RAND_POOL_new(RAND_DRBG_STRENGTH,
RAND_DRBG_STRENGTH / 8,
DRBG_MINMAX_FACTOR * (RAND_DRBG_STRENGTH / 8));
if (pool == NULL)
return 0;
if (RAND_POOL_acquire_entropy(pool) == 0)
goto err;
if (meth->add == NULL
|| meth->add(RAND_POOL_buffer(pool),
RAND_POOL_length(pool),
(RAND_POOL_entropy(pool) / 8.0)) == 0)
goto err;
ret = 1;
}
err:
RAND_POOL_free(pool);
return ret;
}
/*
* The 'random pool' acts as a dumb container for collecting random
* input from various entropy sources. The pool has no knowledge about
* whether its randomness is fed into a legacy RAND_METHOD via RAND_add()
* or into a new style RAND_DRBG. It is the callers duty to 1) initialize the
* random pool, 2) pass it to the polling callbacks, 3) seed the RNG, and
* 4) cleanup the random pool again.
*
* The random pool contains no locking mechanism because its scope and
* lifetime is intended to be restricted to a single stack frame.
*/
struct rand_pool_st {
unsigned char *buffer; /* points to the beginning of the random pool */
size_t len; /* current number of random bytes contained in the pool */
size_t min_len; /* minimum number of random bytes requested */
size_t max_len; /* maximum number of random bytes (allocated buffer size) */
size_t entropy; /* current entropy count in bits */
size_t requested_entropy; /* requested entropy count in bits */
};
/*
* Allocate memory and initialize a new random pool
*/
RAND_POOL *RAND_POOL_new(int entropy, size_t min_len, size_t max_len)
{
RAND_POOL *pool = OPENSSL_zalloc(sizeof(*pool));
if (pool == NULL) {
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
pool->min_len = min_len;
pool->max_len = max_len;
pool->buffer = OPENSSL_secure_zalloc(pool->max_len);
if (pool->buffer == NULL) {
RANDerr(RAND_F_RAND_POOL_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
pool->requested_entropy = entropy;
return pool;
err:
OPENSSL_free(pool);
return NULL;
}
/*
* Free |pool|, securely erasing its buffer.
*/
void RAND_POOL_free(RAND_POOL *pool)
{
if (pool == NULL)
return;
OPENSSL_secure_clear_free(pool->buffer, pool->max_len);
OPENSSL_free(pool);
}
/*
* Return the |pool|'s buffer to the caller (readonly).
*/
const unsigned char *RAND_POOL_buffer(RAND_POOL *pool)
{
return pool->buffer;
}
/*
* Return the |pool|'s entropy to the caller.
*/
size_t RAND_POOL_entropy(RAND_POOL *pool)
{
return pool->entropy;
}
/*
* Return the |pool|'s buffer length to the caller.
*/
size_t RAND_POOL_length(RAND_POOL *pool)
{
return pool->len;
}
/*
* Detach the |pool| buffer and return it to the caller.
* It's the responsibility of the caller to free the buffer
* using OPENSSL_secure_clear_free().
*/
unsigned char *RAND_POOL_detach(RAND_POOL *pool)
{
unsigned char *ret = pool->buffer;
pool->buffer = NULL;
return ret;
}
/*
* If every byte of the input contains |entropy_per_bytes| bits of entropy,
* how many bytes does one need to obtain at least |bits| bits of entropy?
*/
#define ENTROPY_TO_BYTES(bits, entropy_per_bytes) \
(((bits) + ((entropy_per_bytes) - 1))/(entropy_per_bytes))
/*
* Checks whether the |pool|'s entropy is available to the caller.
* This is the case when entropy count and buffer length are high enough.
* Returns
*
* |entropy| if the entropy count and buffer size is large enough
* 0 otherwise
*/
size_t RAND_POOL_entropy_available(RAND_POOL *pool)
{
if (pool->entropy < pool->requested_entropy)
return 0;
if (pool->len < pool->min_len)
return 0;
return pool->entropy;
}
/*
* Returns the (remaining) amount of entropy needed to fill
* the random pool.
*/
size_t RAND_POOL_entropy_needed(RAND_POOL *pool)
{
if (pool->entropy < pool->requested_entropy)
return pool->requested_entropy - pool->entropy;
return 0;
}
/*
* Returns the number of bytes needed to fill the pool, assuming
* the input has 'entropy_per_byte' entropy bits per byte.
* In case of an error, 0 is returned.
*/
size_t RAND_POOL_bytes_needed(RAND_POOL *pool, unsigned int entropy_per_byte)
{
size_t bytes_needed;
size_t entropy_needed = RAND_POOL_entropy_needed(pool);
if (entropy_per_byte < 1 || entropy_per_byte > 8) {
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_ARGUMENT_OUT_OF_RANGE);
return 0;
}
bytes_needed = ENTROPY_TO_BYTES(entropy_needed, entropy_per_byte);
if (bytes_needed > pool->max_len - pool->len) {
/* not enough space left */
RANDerr(RAND_F_RAND_POOL_BYTES_NEEDED, RAND_R_RANDOM_POOL_OVERFLOW);
return 0;
}
if (pool->len < pool->min_len &&
bytes_needed < pool->min_len - pool->len)
/* to meet the min_len requirement */
bytes_needed = pool->min_len - pool->len;
return bytes_needed;
}
/* Returns the remaining number of bytes available */
size_t RAND_POOL_bytes_remaining(RAND_POOL *pool)
{
return pool->max_len - pool->len;
}
/*
* Add random bytes to the random pool.
*
* It is expected that the |buffer| contains |len| bytes of
* random input which contains at least |entropy| bits of
* randomness.
*
* Return available amount of entropy after this operation.
* (see RAND_POOL_entropy_available(pool))
*/
size_t RAND_POOL_add(RAND_POOL *pool,
const unsigned char *buffer, size_t len, size_t entropy)
{
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD, RAND_R_ENTROPY_INPUT_TOO_LONG);
return 0;
}
if (len > 0) {
memcpy(pool->buffer + pool->len, buffer, len);
pool->len += len;
pool->entropy += entropy;
}
return RAND_POOL_entropy_available(pool);
}
/*
* Start to add random bytes to the random pool in-place.
*
* Reserves the next |len| bytes for adding random bytes in-place
* and returns a pointer to the buffer.
* The caller is allowed to copy up to |len| bytes into the buffer.
* If |len| == 0 this is considered a no-op and a NULL pointer
* is returned without producing an error message.
*
* After updating the buffer, RAND_POOL_add_end() needs to be called
* to finish the udpate operation (see next comment).
*/
unsigned char *RAND_POOL_add_begin(RAND_POOL *pool, size_t len)
{
if (len == 0)
return NULL;
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD_BEGIN, RAND_R_RANDOM_POOL_OVERFLOW);
return NULL;
}
return pool->buffer + pool->len;
}
/*
* Finish to add random bytes to the random pool in-place.
*
* Finishes an in-place update of the random pool started by
* RAND_POOL_add_begin() (see previous comment).
* It is expected that |len| bytes of random input have been added
* to the buffer which contain at least |entropy| bits of randomness.
* It is allowed to add less bytes than originally reserved.
*/
size_t RAND_POOL_add_end(RAND_POOL *pool, size_t len, size_t entropy)
{
if (len > pool->max_len - pool->len) {
RANDerr(RAND_F_RAND_POOL_ADD_END, RAND_R_RANDOM_POOL_OVERFLOW);
return 0;
}
if (len > 0) {
pool->len += len;
pool->entropy += entropy;
}
return RAND_POOL_entropy_available(pool);
}
int RAND_set_rand_method(const RAND_METHOD *meth)

View file

@ -14,13 +14,19 @@
#include "rand_lcl.h"
#include <stdio.h>
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI))
#ifdef OPENSSL_RAND_SEED_GETRANDOM
# include <linux/random.h>
#endif
#if (defined(OPENSSL_SYS_VXWORKS) || defined(OPENSSL_SYS_UEFI)) && \
!defined(OPENSSL_RAND_SEED_NONE)
# error "UEFI and VXWorks only support seeding NONE"
#endif
#if !(defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32) \
|| defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_VXWORKS) \
|| defined(OPENSSL_SYS_UEFI))
# if defined(OPENSSL_SYS_VOS)
# ifndef OPENSSL_RAND_SEED_OS
@ -46,16 +52,16 @@
* would be far more predictable. This should only be used for legacy
* platforms.
*
* As a precaution, we generate four times the required amount of seed
* data.
* As a precaution, we assume only 2 bits of entropy per byte.
*/
int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
size_t RAND_POOL_acquire_entropy(RAND_POOL *pool)
{
short int code;
gid_t curr_gid;
pid_t curr_pid;
uid_t curr_uid;
int i, k;
size_t bytes_needed;
struct timespec ts;
unsigned char v;
# ifdef OPENSSL_SYS_VOS_HPPA
@ -71,13 +77,15 @@ int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
* different processes.
*/
curr_gid = getgid();
rand_add(arg, &curr_gid, sizeof curr_gid, 0);
RAND_POOL_add(pool, &curr_gid, sizeof(curr_gid), 0);
curr_pid = getpid();
rand_add(arg, &curr_pid, sizeof curr_pid, 0);
RAND_POOL_add(pool, &curr_pid, sizeof(curr_pid), 0);
curr_uid = getuid();
rand_add(arg, &curr_uid, sizeof curr_uid, 0);
RAND_POOL_add(pool, &curr_uid, sizeof(curr_uid), 0);
for (i = 0; i < (RANDOMNESS_NEEDED * 4); i++) {
bytes_needed = RAND_POOL_bytes_needed(pool, 2 /*entropy_per_byte*/);
for (i = 0; i < bytes_needed; i++) {
/*
* burn some cpu; hope for interrupts, cache collisions, bus
* interference, etc.
@ -98,9 +106,9 @@ int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
/* Get wall clock time, take 8 bits. */
clock_gettime(CLOCK_REALTIME, &ts);
v = (unsigned char)(ts.tv_nsec & 0xFF);
rand_add(arg, &v, sizeof v, 1);
RAND_POOL_add(pool, arg, &v, sizeof(v) , 2);
}
return 1;
return RAND_POOL_entropy_available(pool);
}
# else
@ -127,27 +135,44 @@ int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
# endif
/*
* Try the various seeding methods in turn, exit when succesful.
* Try the various seeding methods in turn, exit when successful.
*
* TODO(DRBG): If more than one entropy source is available, is it
* preferable to stop as soon as enough entropy has been collected
* (as favored by @rsalz) or should one rather be defensive and add
* more entropy than requested and/or from different sources?
*
* Currently, the user can select multiple entropy sources in the
* configure step, yet in practice only the first available source
* will be used. A more flexible solution has been requested, but
* currently it is not clear how this can be achieved without
* overengineering the problem. There are many parameters which
* could be taken into account when selecting the order and amount
* of input from the different entropy sources (trust, quality,
* possibility of blocking).
*/
int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
size_t RAND_POOL_acquire_entropy(RAND_POOL *pool)
{
# ifdef OPENSSL_RAND_SEED_NONE
return 0;
return RAND_POOL_entropy_available(pool);
# else
int ok = 1;
char temp[RANDOMNESS_NEEDED];
# define TEMPSIZE (int)sizeof(temp)
size_t bytes_needed;
size_t entropy_available = 0;
unsigned char *buffer;
# ifdef OPENSSL_RAND_SEED_GETRANDOM
{
int i = getrandom(temp, TEMPSIZE, 0);
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
if (i >= 0) {
rand_add(arg, temp, i, i);
if (i == TEMPSIZE)
goto done;
}
if (getrandom(buffer, bytes_needed, 0) == (int)bytes_needed)
bytes = bytes_needed;
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
if (entropy_available > 0)
return entropy_available;
# endif
# if defined(OPENSSL_RAND_SEED_LIBRANDOM)
@ -157,7 +182,8 @@ int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
# endif
# ifdef OPENSSL_RAND_SEED_DEVRANDOM
{
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
if (bytes_needed > 0) {
static const char *paths[] = { DEVRANDOM, NULL };
FILE *fp;
int i;
@ -166,44 +192,59 @@ int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
if ((fp = fopen(paths[i], "rb")) == NULL)
continue;
setbuf(fp, NULL);
if (fread(temp, 1, TEMPSIZE, fp) == TEMPSIZE) {
rand_add(arg, temp, TEMPSIZE, TEMPSIZE);
fclose(fp);
goto done;
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
if (fread(buffer, 1, bytes_needed, fp) == bytes_needed)
bytes = bytes_needed;
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
fclose(fp);
if (entropy_available > 0)
return entropy_available;
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
}
}
# endif
# ifdef OPENSSL_RAND_SEED_RDTSC
rand_read_tsc(rand_add, arg);
entropy_available = rand_acquire_entropy_from_tsc(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# ifdef OPENSSL_RAND_SEED_RDCPU
if (rand_read_cpu(rand_add, arg))
goto done;
entropy_available = rand_acquire_entropy_from_cpu(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# ifdef OPENSSL_RAND_SEED_EGD
{
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
if (bytes_needed > 0) {
static const char *paths[] = { DEVRANDOM_EGD, NULL };
int i;
for (i = 0; paths[i] != NULL; i++) {
if (RAND_query_egd_bytes(paths[i], temp, TEMPSIZE) == TEMPSIZE) {
rand_add(arg, temp, TEMPSIZE, TEMPSIZE);
goto done;
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
int num = RAND_query_egd_bytes(paths[i],
buffer, (int)bytes_needed);
if (num == (int)bytes_needed)
bytes = bytes_needed;
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
if (entropy_available > 0)
return entropy_available;
}
}
# endif
ok = 0;
done:
OPENSSL_cleanse(temp, TEMPSIZE);
return ok;
return RAND_POOL_entropy_available(pool);
# endif
}
# endif

View file

@ -54,7 +54,7 @@ static struct items_data_st {
{0, 0}
};
int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
size_t RAND_POOL_acquire_entropy(RAND_POOL *pool)
{
/* determine the number of items in the JPI array */
struct items_data_st item_entry;
@ -112,9 +112,14 @@ int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
total_length += (tmp_length - 1);
/* size of seed is total_length*4 bytes (64bytes) */
rand_add(arg, (PTR_T)data_buffer, total_length * 4, total_length * 2);
return 1;
/*
* Size of seed is total_length*4 bytes (64bytes). The original assumption
* was that it contains 4 bits of entropy per byte. This makes a total
* amount of total_length*16 bits (256bits).
*/
return RAND_POOL_add(pool,
(PTR_T)data_buffer, total_length * 4,
total_length * 16);
}
#endif

View file

@ -10,7 +10,6 @@
#include "internal/cryptlib.h"
#include <openssl/rand.h>
#include "rand_lcl.h"
#if defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_WIN32)
# ifndef OPENSSL_RAND_SEED_OS
@ -39,55 +38,80 @@
# define INTEL_DEF_PROV L"Intel Hardware Cryptographic Service Provider"
# endif
int RAND_poll_ex(RAND_poll_cb rand_add, void *arg)
size_t RAND_POOL_acquire_entropy(RAND_POOL *pool)
{
# ifndef USE_BCRYPTGENRANDOM
HCRYPTPROV hProvider;
int ok = 0;
# endif
BYTE buf[RANDOMNESS_NEEDED];
unsigned char *buffer;
size_t bytes_needed;
size_t entropy_available = 0;
# ifdef OPENSSL_RAND_SEED_RDTSC
rand_read_tsc(cb, arg);
entropy_available = rand_acquire_entropy_from_tsc(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# ifdef OPENSSL_RAND_SEED_RDCPU
if (rand_read_cpu(cb, arg))
return 1;
entropy_available = rand_acquire_entropy_from_cpu(pool);
if (entropy_available > 0)
return entropy_available;
# endif
# ifdef USE_BCRYPTGENRANDOM
if (BCryptGenRandom(NULL, buf, (ULONG)sizeof(buf),
BCRYPT_USE_SYSTEM_PREFERRED_RNG) == STATUS_SUCCESS) {
rand_add(arg, buf, sizeof(buf), sizeof(buf));
return 1;
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
if (BCryptGenRandom(NULL, buffer, bytes_needed,
BCRYPT_USE_SYSTEM_PREFERRED_RNG) == STATUS_SUCCESS)
bytes = bytes_needed;
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
if (entropy_available > 0)
return entropy_available;
# else
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
/* poll the CryptoAPI PRNG */
if (CryptAcquireContextW(&hProvider, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT) != 0) {
if (CryptGenRandom(hProvider, (DWORD)sizeof(buf), buf) != 0) {
rand_add(arg, buf, sizeof(buf), sizeof(buf));
ok = 1;
}
if (CryptGenRandom(hProvider, bytes_needed, buffer) != 0)
bytes = bytes_needed;
CryptReleaseContext(hProvider, 0);
if (ok)
return 1;
}
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
if (entropy_available > 0)
return entropy_available;
bytes_needed = RAND_POOL_bytes_needed(pool, 8 /*entropy_per_byte*/);
buffer = RAND_POOL_add_begin(pool, bytes_needed);
if (buffer != NULL) {
size_t bytes = 0;
/* poll the Pentium PRG with CryptoAPI */
if (CryptAcquireContextW(&hProvider, NULL, INTEL_DEF_PROV, PROV_INTEL_SEC,
if (CryptAcquireContextW(&hProvider, NULL,
INTEL_DEF_PROV, PROV_INTEL_SEC,
CRYPT_VERIFYCONTEXT | CRYPT_SILENT) != 0) {
if (CryptGenRandom(hProvider, (DWORD)sizeof(buf), buf) != 0) {
rand_add(arg, buf, sizeof(buf), sizeof(buf));
ok = 1;
}
if (CryptGenRandom(hProvider, bytes_needed, buffer) != 0)
bytes = bytes_needed;
CryptReleaseContext(hProvider, 0);
if (ok)
return 1;
}
entropy_available = RAND_POOL_add_end(pool, bytes, 8 * bytes);
}
if (entropy_available > 0)
return entropy_available;
# endif
return 0;
return RAND_POOL_entropy_available(pool);
}
# if OPENSSL_API_COMPAT < 0x10100000L

View file

@ -2,8 +2,7 @@
=head1 NAME
RAND_add, RAND_poll, RAND_poll_ex, RAND_poll_cb,
RAND_seed, RAND_status, RAND_event, RAND_screen
RAND_add, RAND_poll, RAND_seed, RAND_status, RAND_event, RAND_screen
- add randomness to the PRNG or get its status
=head1 SYNOPSIS
@ -11,10 +10,6 @@ RAND_seed, RAND_status, RAND_event, RAND_screen
#include <openssl/rand.h>
int RAND_status(void);
typedef void (*RAND_poll_cb)(void *arg,
const void *buf, int num, double randomness);
int RAND_poll_ex(RAND_poll_cb cb, void *arg);
int RAND_poll();
void RAND_add(const void *buf, int num, double randomness);
@ -40,16 +35,12 @@ and network packet timings, can be reasonable sources of seeding material.
RAND_status() indicates whether or not the CSPRNG has been sufficiently
seeded. If not, functions such as RAND_bytes(3) will fail.
RAND_poll_ex() uses the system's capabilities to obtain a buffer
containing random bits which can then be used to seed a CSPRNG. The
exact features used depends on how OpenSSL was configured, and a summary
can be displayed with the OpenSSL L<version(1)> command. This function
is normally called as needed by the CSPRNG. The B<arg> parameter is an
arbitrary pointer which will be passed as an argument to the callback.
The B<cb> function is called each time there is data to add.
RAND_poll() invokes RAND_poll_ex() with B<cb> and B<arg> set so that it
will call RAND_add(), to add the randomness to the global CSPRNG.
RAND_poll() uses the system's capabilities to seed the CSPRNG using
random input obtained from polling various trusted entropy sources.
The default choice of the entropy source can be modified at build time
using the --with-rand-seed configure option, see also the B<NOTES> section.
A summary of the configure options can be displayed with the OpenSSL
L<version(1)> command.
RAND_add() mixes the B<num> bytes at B<buf> into the PRNG state.
The B<randomness> argument is an estimate of how much randomness is
@ -78,6 +69,72 @@ RAND_event() returns RAND_status().
The other functions do not return values.
=head1 NOTES
The new OpenSSL DRBG has some peculiarities which need to be taken
into account when it is selected as the default OpenSSL CSPRNG, i.e.,
when RAND_get_rand_method() == RAND_OpenSSL().
This applies in particular to the way reseeding is done by the DRBG:
=over 2
=item *
The DRBG seeds itself automatically, pulling random input from trusted
entropy sources.
Automatic reseeding occurs after a predefined number of generate requests.
The selection of the trusted entropy sources is configured at build
time using the --with-rand-seed option.
=item *
The DRBG distinguishes two different types of random input:
'entropy', which comes from a trusted source, and 'additional input',
which can optionally be added by the user and is considered untrusted.
=back
Automatic seeding can be disabled using the --with-rand-seed=none option.
=head2 DRBG with automatic seeding enabled
Calling RAND_poll() or RAND_add() is not necessary, because the DRBG
polls the entropy source automatically.
However, both calls are permitted, and do reseed the RNG.
RAND_add() can be used to add both kinds of random input, depending on the
value of the B<randomness> argument:
=over 4
=item randomness == 0:
The random bytes are mixed as additional input into the current state of
the DRBG.
Mixing in additional input is not considered a full reseeding, hence the
reseed counter is not reset.
=item randomness > 0:
The random bytes are used as entropy input for a full reseeding
(resp. reinstantiation) if the DRBG is instantiated
(resp. uninstantiated or in an error state).
A reseeding requires 16 bytes (128 bits) of randomness.
It is possible to provide less randomness than required.
In this case the missing randomness will be obtained by pulling random input
from the trusted entropy sources.
=back
=head2 DRBG with automatic seeding disabled (--with-rand-seed=none)
Calling RAND_poll() will always fail.
RAND_add() needs to be called for initial seeding and periodic reseeding.
At least 16 bytes (128 bits) of randomness have to be provided, otherwise
the (re-)seeding of the DRBG will fail.
=head1 HISTORY
RAND_event() and RAND_screen() were deprecated in OpenSSL 1.1.0 and should

View file

@ -13,6 +13,17 @@
/* In CTR mode, use derivation function ctr_df */
#define RAND_DRBG_FLAG_CTR_USE_DF 0x2
/*
* Default security strength (in the sense of [NIST SP 800-90Ar1])
* of the default OpenSSL DRBG, and the corresponding NID.
*
* Currently supported values: 128, 192, 256
*
* TODO(DRBG): would be nice to have the strength configurable
*/
# define RAND_DRBG_STRENGTH 128
# define RAND_DRBG_NID NID_aes_128_ctr
/*
* Object lifetime functions.
*/
@ -64,4 +75,38 @@ int RAND_DRBG_set_callbacks(RAND_DRBG *dctx,
RAND_DRBG_get_nonce_fn get_nonce,
RAND_DRBG_cleanup_nonce_fn cleanup_nonce);
/*
* RAND_POOL functions
*/
RAND_POOL *RAND_POOL_new(int entropy_requested, size_t min_len, size_t max_len);
void RAND_POOL_free(RAND_POOL *pool);
const unsigned char *RAND_POOL_buffer(RAND_POOL *pool);
unsigned char *RAND_POOL_detach(RAND_POOL *pool);
size_t RAND_POOL_entropy(RAND_POOL *pool);
size_t RAND_POOL_length(RAND_POOL *pool);
size_t RAND_POOL_entropy_available(RAND_POOL *pool);
size_t RAND_POOL_entropy_needed(RAND_POOL *pool);
size_t RAND_POOL_bytes_needed(RAND_POOL *pool, unsigned int entropy_per_byte);
size_t RAND_POOL_bytes_remaining(RAND_POOL *pool);
size_t RAND_POOL_add(RAND_POOL *pool,
const unsigned char *buffer, size_t len, size_t entropy);
unsigned char *RAND_POOL_add_begin(RAND_POOL *pool, size_t len);
size_t RAND_POOL_add_end(RAND_POOL *pool, size_t len, size_t entropy);
/*
* Add random bytes to the pool to acquire requested amount of entropy
*
* This function is platform specific and tries to acquire the requested
* amount of entropy by polling platform specific entropy sources.
*
* If the function succeeds in acquiring at least |entropy_requested| bits
* of entropy, the total entropy count is returned. If it fails, it returns
* an entropy count of 0.
*/
size_t RAND_POOL_acquire_entropy(RAND_POOL *pool);
#endif

View file

@ -115,6 +115,7 @@ typedef struct ec_key_method_st EC_KEY_METHOD;
typedef struct rand_meth_st RAND_METHOD;
typedef struct rand_drbg_st RAND_DRBG;
typedef struct rand_pool_st RAND_POOL;
typedef struct ssl_dane_st SSL_DANE;
typedef struct x509_st X509;

View file

@ -64,7 +64,6 @@ int RAND_egd_bytes(const char *path, int bytes);
typedef void (*RAND_poll_cb)(void *arg,
const void *buf, int num, double randomness);
int RAND_poll(void);
int RAND_poll_ex(RAND_poll_cb rand_add, void *arg);
# if defined(_WIN32) && (defined(BASETYPES) || defined(_WINDEF_H))
/* application has to include <windows.h> in order to use these */

View file

@ -24,14 +24,21 @@ int ERR_load_RAND_strings(void);
*/
# define RAND_F_DRBG_BYTES 101
# define RAND_F_DRBG_GET_ENTROPY 105
# define RAND_F_DRBG_SETUP 117
# define RAND_F_GET_ENTROPY 106
# define RAND_F_RAND_BYTES 100
# define RAND_F_RAND_DRBG_GENERATE 107
# define RAND_F_RAND_DRBG_INSTANTIATE 108
# define RAND_F_RAND_DRBG_NEW 109
# define RAND_F_RAND_DRBG_RESEED 110
# define RAND_F_RAND_DRBG_RESTART 102
# define RAND_F_RAND_DRBG_SET 104
# define RAND_F_RAND_LOAD_FILE 111
# define RAND_F_RAND_POOL_ADD 103
# define RAND_F_RAND_POOL_ADD_BEGIN 113
# define RAND_F_RAND_POOL_ADD_END 114
# define RAND_F_RAND_POOL_BYTES_NEEDED 115
# define RAND_F_RAND_POOL_NEW 116
# define RAND_F_RAND_WRITE_FILE 112
/*
@ -39,13 +46,18 @@ int ERR_load_RAND_strings(void);
*/
# define RAND_R_ADDITIONAL_INPUT_TOO_LONG 102
# define RAND_R_ALREADY_INSTANTIATED 103
# define RAND_R_ARGUMENT_OUT_OF_RANGE 105
# define RAND_R_CANNOT_OPEN_FILE 121
# define RAND_R_DRBG_NOT_INITIALISED 104
# define RAND_R_ENTROPY_INPUT_TOO_LONG 106
# define RAND_R_ENTROPY_OUT_OF_RANGE 124
# define RAND_R_ERROR_ENTROPY_POOL_WAS_IGNORED 127
# define RAND_R_ERROR_INITIALISING_DRBG 107
# define RAND_R_ERROR_INSTANTIATING_DRBG 108
# define RAND_R_ERROR_RETRIEVING_ADDITIONAL_INPUT 109
# define RAND_R_ERROR_RETRIEVING_ENTROPY 110
# define RAND_R_ERROR_RETRIEVING_NONCE 111
# define RAND_R_FAILED_TO_CREATE_LOCK 126
# define RAND_R_FUNC_NOT_IMPLEMENTED 101
# define RAND_R_FWRITE_ERROR 123
# define RAND_R_GENERATE_ERROR 112
@ -55,6 +67,7 @@ int ERR_load_RAND_strings(void);
# define RAND_R_NOT_INSTANTIATED 115
# define RAND_R_PERSONALISATION_STRING_TOO_LONG 116
# define RAND_R_PRNG_NOT_SEEDED 100
# define RAND_R_RANDOM_POOL_OVERFLOW 125
# define RAND_R_REQUEST_TOO_LARGE_FOR_DRBG 117
# define RAND_R_RESEED_ERROR 118
# define RAND_R_SELFTEST_FAILURE 119

View file

@ -633,10 +633,13 @@ SSL *SSL_new(SSL_CTX *ctx)
* chained DRBG.
*/
if (RAND_get_rand_method() == RAND_OpenSSL()) {
s->drbg = RAND_DRBG_new(NID_aes_128_ctr, RAND_DRBG_FLAG_CTR_USE_DF,
s->drbg =
RAND_DRBG_new(RAND_DRBG_NID, RAND_DRBG_FLAG_CTR_USE_DF,
RAND_DRBG_get0_global());
if (s->drbg == NULL
|| RAND_DRBG_instantiate(s->drbg, NULL, 0) == 0) {
|| RAND_DRBG_instantiate(s->drbg,
(const unsigned char *) SSL_version_str,
sizeof(SSL_version_str) - 1) == 0) {
CRYPTO_THREAD_lock_free(s->lock);
goto err;
}

View file

@ -481,7 +481,7 @@ static int test_rand_add(void)
{
char *p;
if (!TEST_ptr(p = malloc(RAND_ADD_SIZE)))
if (!TEST_ptr(p = calloc(RAND_ADD_SIZE, 1)))
return 0;
RAND_add(p, RAND_ADD_SIZE, RAND_ADD_SIZE);
free(p);

View file

@ -4371,7 +4371,6 @@ SCRYPT_PARAMS_it 4314 1_1_1 EXIST:EXPORT_VAR_AS_FUNCTION:
CRYPTO_secure_clear_free 4315 1_1_0g EXIST::FUNCTION:
EVP_PKEY_meth_get0 4316 1_1_1 EXIST::FUNCTION:
EVP_PKEY_meth_get_count 4317 1_1_1 EXIST::FUNCTION:
RAND_poll_ex 4318 1_1_1 EXIST::FUNCTION:
RAND_DRBG_get0_global 4319 1_1_1 EXIST::FUNCTION:
RAND_priv_bytes 4320 1_1_1 EXIST::FUNCTION:
BN_priv_rand 4321 1_1_1 EXIST::FUNCTION:
@ -4404,3 +4403,17 @@ EVP_PKEY_set1_engine 4347 1_1_0g EXIST::FUNCTION:ENGINE
DH_new_by_nid 4348 1_1_1 EXIST::FUNCTION:DH
DH_get_nid 4349 1_1_1 EXIST::FUNCTION:DH
CRYPTO_get_alloc_counts 4350 1_1_1 EXIST::FUNCTION:CRYPTO_MDEBUG
RAND_POOL_new 4351 1_1_1 EXIST::FUNCTION:
RAND_POOL_free 4352 1_1_1 EXIST::FUNCTION:
RAND_POOL_buffer 4353 1_1_1 EXIST::FUNCTION:
RAND_POOL_detach 4354 1_1_1 EXIST::FUNCTION:
RAND_POOL_entropy 4355 1_1_1 EXIST::FUNCTION:
RAND_POOL_length 4356 1_1_1 EXIST::FUNCTION:
RAND_POOL_entropy_available 4357 1_1_1 EXIST::FUNCTION:
RAND_POOL_entropy_needed 4358 1_1_1 EXIST::FUNCTION:
RAND_POOL_bytes_needed 4359 1_1_1 EXIST::FUNCTION:
RAND_POOL_bytes_remaining 4360 1_1_1 EXIST::FUNCTION:
RAND_POOL_add 4361 1_1_1 EXIST::FUNCTION:
RAND_POOL_add_begin 4362 1_1_1 EXIST::FUNCTION:
RAND_POOL_add_end 4363 1_1_1 EXIST::FUNCTION:
RAND_POOL_acquire_entropy 4364 1_1_1 EXIST::FUNCTION: