VIA-specific Montgomery multiplication routine.
This commit is contained in:
parent
f0f61f6d0d
commit
cecfdbf72d
1 changed files with 227 additions and 0 deletions
227
crypto/bn/asm/via-mont.pl
Normal file
227
crypto/bn/asm/via-mont.pl
Normal file
|
@ -0,0 +1,227 @@
|
|||
#!/usr/bin/env perl
|
||||
#
|
||||
# ====================================================================
|
||||
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
|
||||
# project. The module is, however, dual licensed under OpenSSL and
|
||||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||||
# ====================================================================
|
||||
#
|
||||
# Wrapper around 'rep montmul', VIA-specific instruction accessing
|
||||
# PadLock Montgomery Multiplier. The wrapper is designed as drop-in
|
||||
# replacement for OpenSSL bn_mul_mont [first implemented in 0.9.9].
|
||||
#
|
||||
# Below are interleaved outputs from 'openssl speed rsa dsa' for 4
|
||||
# different software configurations on 1.5GHz VIA Esther processor.
|
||||
# Lines marked with "software integer" denote performance of hand-
|
||||
# coded integer-only assembler found in OpenSSL 0.9.7. "Software SSE2"
|
||||
# refers to hand-coded SSE2 Montgomery multiplication procedure found
|
||||
# OpenSSL 0.9.9. "Hardware VIA SDK" refers to padlock_pmm routine from
|
||||
# Padlock SDK 2.0.1 available for download from VIA, which naturally
|
||||
# utilizes the magic 'repz montmul' instruction. And finally "hardware
|
||||
# this" refers to *this* implementation which also uses 'repz montmul'
|
||||
#
|
||||
# sign verify sign/s verify/s
|
||||
# rsa 512 bits 0.001720s 0.000140s 581.4 7149.7 software integer
|
||||
# rsa 512 bits 0.000690s 0.000086s 1450.3 11606.0 software SSE2
|
||||
# rsa 512 bits 0.006136s 0.000201s 163.0 4974.5 hardware VIA SDK
|
||||
# rsa 512 bits 0.000712s 0.000050s 1404.9 19858.5 hardware this
|
||||
#
|
||||
# rsa 1024 bits 0.008518s 0.000413s 117.4 2420.8 software integer
|
||||
# rsa 1024 bits 0.004275s 0.000277s 233.9 3609.7 software SSE2
|
||||
# rsa 1024 bits 0.012136s 0.000260s 82.4 3844.5 hardware VIA SDK
|
||||
# rsa 1024 bits 0.002522s 0.000116s 396.5 8650.9 hardware this
|
||||
#
|
||||
# rsa 2048 bits 0.050101s 0.001371s 20.0 729.6 software integer
|
||||
# rsa 2048 bits 0.030273s 0.001008s 33.0 991.9 software SSE2
|
||||
# rsa 2048 bits 0.030833s 0.000976s 32.4 1025.1 hardware VIA SDK
|
||||
# rsa 2048 bits 0.011879s 0.000342s 84.2 2921.7 hardware this
|
||||
#
|
||||
# rsa 4096 bits 0.327097s 0.004859s 3.1 205.8 software integer
|
||||
# rsa 4096 bits 0.229318s 0.003859s 4.4 259.2 software SSE2
|
||||
# rsa 4096 bits 0.233953s 0.003274s 4.3 305.4 hardware VIA SDK
|
||||
# rsa 4096 bits 0.070493s 0.001166s 14.2 857.6 hardware this
|
||||
#
|
||||
# dsa 512 bits 0.001342s 0.001651s 745.2 605.7 software integer
|
||||
# dsa 512 bits 0.000844s 0.000987s 1185.3 1013.1 software SSE2
|
||||
# dsa 512 bits 0.001902s 0.002247s 525.6 444.9 hardware VIA SDK
|
||||
# dsa 512 bits 0.000458s 0.000524s 2182.2 1909.1 hardware this
|
||||
#
|
||||
# dsa 1024 bits 0.003964s 0.004926s 252.3 203.0 software integer
|
||||
# dsa 1024 bits 0.002686s 0.003166s 372.3 315.8 software SSE2
|
||||
# dsa 1024 bits 0.002397s 0.002823s 417.1 354.3 hardware VIA SDK
|
||||
# dsa 1024 bits 0.000978s 0.001170s 1022.2 855.0 hardware this
|
||||
#
|
||||
# dsa 2048 bits 0.013280s 0.016518s 75.3 60.5 software integer
|
||||
# dsa 2048 bits 0.009911s 0.011522s 100.9 86.8 software SSE2
|
||||
# dsa 2048 bits 0.009542s 0.011763s 104.8 85.0 hardware VIA SDK
|
||||
# dsa 2048 bits 0.002884s 0.003352s 346.8 298.3 hardware this
|
||||
#
|
||||
# To give you some other reference point here is output for 2.4GHz P4
|
||||
# running hand-coded SSE2 bn_mul_mont found in 0.9.9, i.e. "software
|
||||
# SSE2" in above terms.
|
||||
#
|
||||
# rsa 512 bits 0.000407s 0.000047s 2454.2 21137.0
|
||||
# rsa 1024 bits 0.002426s 0.000141s 412.1 7100.0
|
||||
# rsa 2048 bits 0.015046s 0.000491s 66.5 2034.9
|
||||
# rsa 4096 bits 0.109770s 0.002379s 9.1 420.3
|
||||
# dsa 512 bits 0.000438s 0.000525s 2281.1 1904.1
|
||||
# dsa 1024 bits 0.001346s 0.001595s 742.7 627.0
|
||||
# dsa 2048 bits 0.004745s 0.005582s 210.7 179.1
|
||||
#
|
||||
# Conclusions:
|
||||
# - VIA SDK leaves a *lot* of room for improvement (which this
|
||||
# implementation successfully fills:-);
|
||||
# - 'rep montmul' gives up to >3x performance improvement depending on
|
||||
# key length;
|
||||
# - in terms of absolute performance it delivers approximately as much
|
||||
# as modern out-of-order 32-bit cores [again, for longer keys].
|
||||
|
||||
push(@INC,".","../../perlasm");
|
||||
require "x86asm.pl";
|
||||
|
||||
&asm_init($ARGV[0],"via-mont.pl");
|
||||
|
||||
# int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num);
|
||||
$func="bn_mul_mont_padlock";
|
||||
|
||||
$pad=16*1; # amount of reserved bytes on top of every vector
|
||||
|
||||
# stack layout
|
||||
$mZeroPrime=&DWP(0,"esp"); # these are specified by VIA
|
||||
$A=&DWP(4,"esp");
|
||||
$B=&DWP(8,"esp");
|
||||
$T=&DWP(12,"esp");
|
||||
$M=&DWP(16,"esp");
|
||||
$scratch=&DWP(20,"esp");
|
||||
$rp=&DWP(24,"esp"); # these are mine
|
||||
$sp=&DWP(28,"esp");
|
||||
# &DWP(32,"esp") # 32 byte scratch area
|
||||
# &DWP(64+(4*$num+$pad)*0,"esp") # padded tp[num]
|
||||
# &DWP(64+(4*$num+$pad)*1,"esp") # padded copy of ap[num]
|
||||
# &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of bp[num]
|
||||
# &DWP(64+(4*$num+$pad)*2,"esp") # padded copy of np[num]
|
||||
# Note that SDK suggests to unconditionally allocate 2K per vector. This
|
||||
# has quite an impact on performance. It naturally depends on key length,
|
||||
# but to give an example 1024 bit private RSA key operations suffer >30%
|
||||
# penalty. I allocate only as much as actually required...
|
||||
|
||||
&function_begin($func);
|
||||
&xor ("eax","eax");
|
||||
&mov ("ecx",&wparam(5)); # num
|
||||
# meet VIA's limitations for num [note that the specification
|
||||
# expresses them in bits, while we work with amount of 32-bit words]
|
||||
&test ("ecx",3);
|
||||
&jnz (&label("leave")); # num % 4 != 0
|
||||
&cmp ("ecx",8);
|
||||
&jb (&label("leave")); # num < 8
|
||||
&cmp ("ecx",256);
|
||||
&ja (&label("leave")); # num > 1024
|
||||
|
||||
&pushf ();
|
||||
&cld ();
|
||||
|
||||
&mov ("edi",&wparam(0)); # rp
|
||||
&mov ("eax",&wparam(1)); # ap
|
||||
&mov ("ebx",&wparam(2)); # bp
|
||||
&mov ("edx",&wparam(3)); # np
|
||||
&mov ("esi",&wparam(4)); # n0
|
||||
&mov ("esi",&DWP(0,"esi")); # *n0
|
||||
|
||||
&lea ("ecx",&DWP($pad,"","ecx",4)); # ecx becomes vector size in bytes
|
||||
&lea ("ebp",&DWP(64,"","ecx",4)); # allocate 4 vectors + 64 bytes
|
||||
&neg ("ebp");
|
||||
&add ("ebp","esp");
|
||||
&and ("ebp",-64); # align to cache-line
|
||||
&xchg ("ebp","esp"); # alloca
|
||||
|
||||
&mov ($rp,"edi"); # save rp
|
||||
&mov ($sp,"ebp"); # save esp
|
||||
|
||||
&mov ($mZeroPrime,"esi");
|
||||
&lea ("esi",&DWP(64,"esp")); # tp
|
||||
&mov ($T,"esi");
|
||||
&lea ("edi",&DWP(32,"esp")); # scratch area
|
||||
&mov ($scratch,"edi");
|
||||
&mov ("esi","eax");
|
||||
|
||||
&lea ("ebp",&DWP(-$pad,"ecx"));
|
||||
&shr ("ebp",2); # restore original num value in ebp
|
||||
|
||||
&add ("ecx",32/4); # (4 vectors + 32 byte scratch)/4
|
||||
&xor ("eax","eax");
|
||||
&data_byte(0xf3,0xab); # rep stosl, bzero
|
||||
|
||||
&mov ("ecx","ebp");
|
||||
&lea ("edi",&DWP(64+$pad,"esp","ecx",4));# pointer to ap copy
|
||||
&mov ($A,"edi");
|
||||
&data_byte(0xf3,0xa5); # rep movsl, memcpy
|
||||
|
||||
# edi points at the end of ap copy...
|
||||
&mov ("ecx","ebp");
|
||||
&add ("edi",$pad); # skip padding to point at bp copy
|
||||
&mov ("esi","ebx");
|
||||
&mov ($B,"edi");
|
||||
&data_byte(0xf3,0xa5); # rep movsl, memcpy
|
||||
|
||||
# edi points at the end of bp copy...
|
||||
&mov ("ecx","ebp");
|
||||
&add ("edi",$pad); # skip padding to point at np copy
|
||||
&mov ("esi","edx");
|
||||
&mov ($M,"edi");
|
||||
&data_byte(0xf3,0xa5); # rep movsl, memcpy
|
||||
|
||||
# let magic happen...
|
||||
&mov ("ecx","ebp");
|
||||
&mov ("esi","esp");
|
||||
&xor ("eax","eax");
|
||||
&shl ("ecx",5); # convert word counter to bit counter
|
||||
&align (4);
|
||||
&data_byte(0xf3,0x0f,0xa6,0xc0);# rep montmul
|
||||
|
||||
&mov ("ecx","ebp");
|
||||
&xor ("edx","edx"); # i=0
|
||||
&lea ("esi",&DWP(64,"esp")); # tp
|
||||
# edi still points at the end of np copy...
|
||||
&neg ("ebp");
|
||||
&lea ("ebp",&DWP(0,"edi","ebp",4)); # so just "rewind"
|
||||
&mov ("edi",$rp); # restore rp
|
||||
|
||||
&mov ("ebx",&DWP(0,"esi","ecx",4)); # upmost overflow bit
|
||||
&cmp ("ebx",0); # clears CF unconfitionally
|
||||
&jnz (&label("sub"));
|
||||
&mov ("eax",&DWP(-4,"esi","ecx",4));
|
||||
&cmp ("eax",&DWP(-4,"ebp","ecx",4)); # tp[num-1]-np[num-1]?
|
||||
&jae (&label("sub")); # if taken CF is cleared
|
||||
|
||||
&set_label("copy",4);
|
||||
&mov ("ebx","ecx");
|
||||
&data_byte(0xf3,0xa5); # rep movsl
|
||||
&mov ("ecx","ebx");
|
||||
&jmp (&label("zap"));
|
||||
|
||||
&set_label("sub",16);
|
||||
&mov ("eax",&DWP(0,"esi","edx",4));
|
||||
&sbb ("eax",&DWP(0,"ebp","edx",4));
|
||||
&mov (&DWP(0,"edi","edx",4),"eax"); # rp[i]=tp[i]-np[i]
|
||||
&lea ("edx",&DWP(1,"edx")); # i++
|
||||
&dec ("ecx"); # doesn't affect CF!
|
||||
&jg (&label("sub"));
|
||||
&sbb ("ebx",0); # upmost overflow is still there
|
||||
&mov ("ecx","edx");
|
||||
&jc (&label("copy"));
|
||||
|
||||
&set_label("zap",4);
|
||||
&mov ("ebp",$sp);
|
||||
&xor ("eax","eax");
|
||||
&lea ("ecx",&DWP(64/4+$pad,"","ecx",4));# size of frame divided by 4
|
||||
&mov ("edi","esp");
|
||||
&data_byte(0xf3,0xab); # rep stosl, bzero
|
||||
|
||||
&mov ("esp","ebp");
|
||||
&inc ("eax"); # signal "done"
|
||||
&popf ();
|
||||
&set_label("leave");
|
||||
&function_end($func);
|
||||
|
||||
&asm_finish();
|
Loading…
Reference in a new issue