X509_verify_cert() cleanup

Reviewed-by: Richard Levitte <levitte@openssl.org>
This commit is contained in:
Viktor Dukhovni 2015-12-29 12:42:57 -05:00
parent 63c6aa6b93
commit d9b8b89bec
4 changed files with 403 additions and 348 deletions

View file

@ -71,6 +71,7 @@
static ERR_STRING_DATA X509_str_functs[] = { static ERR_STRING_DATA X509_str_functs[] = {
{ERR_FUNC(X509_F_ADD_CERT_DIR), "add_cert_dir"}, {ERR_FUNC(X509_F_ADD_CERT_DIR), "add_cert_dir"},
{ERR_FUNC(X509_F_BUILD_CHAIN), "build_chain"},
{ERR_FUNC(X509_F_BY_FILE_CTRL), "by_file_ctrl"}, {ERR_FUNC(X509_F_BY_FILE_CTRL), "by_file_ctrl"},
{ERR_FUNC(X509_F_CHECK_POLICY), "check_policy"}, {ERR_FUNC(X509_F_CHECK_POLICY), "check_policy"},
{ERR_FUNC(X509_F_DIR_CTRL), "dir_ctrl"}, {ERR_FUNC(X509_F_DIR_CTRL), "dir_ctrl"},

View file

@ -59,6 +59,7 @@
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
#include <errno.h> #include <errno.h>
#include <limits.h>
#include "internal/cryptlib.h" #include "internal/cryptlib.h"
#include <openssl/crypto.h> #include <openssl/crypto.h>
@ -69,7 +70,7 @@
#include <openssl/x509.h> #include <openssl/x509.h>
#include <openssl/x509v3.h> #include <openssl/x509v3.h>
#include <openssl/objects.h> #include <openssl/objects.h>
#include "internal/x509_int.h" #include <internal/x509_int.h>
#include "x509_lcl.h" #include "x509_lcl.h"
/* CRL score values */ /* CRL score values */
@ -110,13 +111,15 @@
#define CRL_SCORE_TIME_DELTA 0x002 #define CRL_SCORE_TIME_DELTA 0x002
static int build_chain(X509_STORE_CTX *ctx);
static int verify_chain(X509_STORE_CTX *ctx);
static int null_callback(int ok, X509_STORE_CTX *e); static int null_callback(int ok, X509_STORE_CTX *e);
static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer); static int check_issued(X509_STORE_CTX *ctx, X509 *x, X509 *issuer);
static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x); static X509 *find_issuer(X509_STORE_CTX *ctx, STACK_OF(X509) *sk, X509 *x);
static int check_chain_extensions(X509_STORE_CTX *ctx); static int check_chain_extensions(X509_STORE_CTX *ctx);
static int check_name_constraints(X509_STORE_CTX *ctx); static int check_name_constraints(X509_STORE_CTX *ctx);
static int check_id(X509_STORE_CTX *ctx); static int check_id(X509_STORE_CTX *ctx);
static int check_trust(X509_STORE_CTX *ctx); static int check_trust(X509_STORE_CTX *ctx, int num_untrusted);
static int check_revocation(X509_STORE_CTX *ctx); static int check_revocation(X509_STORE_CTX *ctx);
static int check_cert(X509_STORE_CTX *ctx); static int check_cert(X509_STORE_CTX *ctx);
static int check_policy(X509_STORE_CTX *ctx); static int check_policy(X509_STORE_CTX *ctx);
@ -148,6 +151,11 @@ static int null_callback(int ok, X509_STORE_CTX *e)
/* Return 1 is a certificate is self signed */ /* Return 1 is a certificate is self signed */
static int cert_self_signed(X509 *x) static int cert_self_signed(X509 *x)
{ {
/*
* FIXME: x509v3_cache_extensions() needs to detect more failures and not
* set EXFLAG_SET when that happens. Especially, if the failures are
* parse errors, rather than memory pressure!
*/
X509_check_purpose(x, -1, 0); X509_check_purpose(x, -1, 0);
if (x->ex_flags & EXFLAG_SS) if (x->ex_flags & EXFLAG_SS)
return 1; return 1;
@ -180,19 +188,60 @@ static X509 *lookup_cert_match(X509_STORE_CTX *ctx, X509 *x)
return xtmp; return xtmp;
} }
static int verify_chain(X509_STORE_CTX *ctx)
{
int (*cb) (int xok, X509_STORE_CTX *xctx) = ctx->verify_cb;
int err;
int ok;
/*
* Before either returning with an error, or continuing with CRL checks,
* instantiate chain public key parameters.
*/
if ((ok = build_chain(ctx)) == 0 ||
(ok = check_chain_extensions(ctx)) == 0 ||
(ok = check_name_constraints(ctx)) == 0 ||
(ok = check_id(ctx)) == 0 || 1)
X509_get_pubkey_parameters(NULL, ctx->chain);
if (ok == 0 || (ok = ctx->check_revocation(ctx)) == 0)
return ok;
err = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain,
ctx->param->flags);
if (err != X509_V_OK) {
ctx->error = err;
ctx->current_cert = sk_X509_value(ctx->chain, ctx->error_depth);
if ((ok = cb(0, ctx)) == 0)
return ok;
}
/* Verify chain signatures and expiration times */
ok = (ctx->verify != NULL) ? ctx->verify(ctx) : internal_verify(ctx);
if (!ok)
return ok;
#ifndef OPENSSL_NO_RFC3779
/* RFC 3779 path validation, now that CRL check has been done */
if ((ok = v3_asid_validate_path(ctx)) == 0)
return ok;
if ((ok = v3_addr_validate_path(ctx)) == 0)
return ok;
#endif
/* If we get this far evaluate policies */
if (ctx->param->flags & X509_V_FLAG_POLICY_CHECK)
ok = ctx->check_policy(ctx);
return ok;
}
int X509_verify_cert(X509_STORE_CTX *ctx) int X509_verify_cert(X509_STORE_CTX *ctx)
{ {
X509 *x, *xtmp, *xtmp2, *chain_ss = NULL;
int bad_chain = 0;
X509_VERIFY_PARAM *param = ctx->param;
int depth, i, ok = 0;
int num, j, retry;
int (*cb) (int xok, X509_STORE_CTX *xctx);
STACK_OF(X509) *sktmp = NULL;
if (ctx->cert == NULL) { if (ctx->cert == NULL) {
X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY); X509err(X509_F_X509_VERIFY_CERT, X509_R_NO_CERT_SET_FOR_US_TO_VERIFY);
return -1; return -1;
} }
if (ctx->chain != NULL) { if (ctx->chain != NULL) {
/* /*
* This X509_STORE_CTX has already been used to verify a cert. We * This X509_STORE_CTX has already been used to verify a cert. We
@ -202,8 +251,6 @@ int X509_verify_cert(X509_STORE_CTX *ctx)
return -1; return -1;
} }
cb = ctx->verify_cb;
/* /*
* first we make sure the chain we are going to build is present and that * first we make sure the chain we are going to build is present and that
* the first entry is in place * the first entry is in place
@ -211,302 +258,12 @@ int X509_verify_cert(X509_STORE_CTX *ctx)
if (((ctx->chain = sk_X509_new_null()) == NULL) || if (((ctx->chain = sk_X509_new_null()) == NULL) ||
(!sk_X509_push(ctx->chain, ctx->cert))) { (!sk_X509_push(ctx->chain, ctx->cert))) {
X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE); X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
goto end; return -1;
} }
X509_up_ref(ctx->cert); X509_up_ref(ctx->cert);
ctx->last_untrusted = 1; ctx->num_untrusted = 1;
/* We use a temporary STACK so we can chop and hack at it */ return verify_chain(ctx);
if (ctx->untrusted != NULL
&& (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) {
X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
goto end;
}
num = sk_X509_num(ctx->chain);
x = sk_X509_value(ctx->chain, num - 1);
depth = param->depth;
for (;;) {
/* If we have enough, we break */
if (depth < num)
break; /* FIXME: If this happens, we should take
* note of it and, if appropriate, use the
* X509_V_ERR_CERT_CHAIN_TOO_LONG error code
* later. */
/* If we are self signed, we break */
if (cert_self_signed(x))
break;
/*
* If asked see if we can find issuer in trusted store first
*/
if (ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST) {
ok = ctx->get_issuer(&xtmp, ctx, x);
if (ok < 0)
goto end;
/*
* If successful for now free up cert so it will be picked up
* again later.
*/
if (ok > 0) {
X509_free(xtmp);
break;
}
}
/* If we were passed a cert chain, use it first */
if (ctx->untrusted != NULL) {
xtmp = find_issuer(ctx, sktmp, x);
if (xtmp != NULL) {
if (!sk_X509_push(ctx->chain, xtmp)) {
X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
goto end;
}
X509_up_ref(xtmp);
(void)sk_X509_delete_ptr(sktmp, xtmp);
ctx->last_untrusted++;
x = xtmp;
num++;
/*
* reparse the full chain for the next one
*/
continue;
}
}
break;
}
/* Remember how many untrusted certs we have */
j = num;
/*
* at this point, chain should contain a list of untrusted certificates.
* We now need to add at least one trusted one, if possible, otherwise we
* complain.
*/
do {
/*
* Examine last certificate in chain and see if it is self signed.
*/
i = sk_X509_num(ctx->chain);
x = sk_X509_value(ctx->chain, i - 1);
if (cert_self_signed(x)) {
/* we have a self signed certificate */
if (sk_X509_num(ctx->chain) == 1) {
/*
* We have a single self signed certificate: see if we can
* find it in the store. We must have an exact match to avoid
* possible impersonation.
*/
ok = ctx->get_issuer(&xtmp, ctx, x);
if ((ok <= 0) || X509_cmp(x, xtmp)) {
ctx->error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT;
ctx->current_cert = x;
ctx->error_depth = i - 1;
if (ok == 1)
X509_free(xtmp);
bad_chain = 1;
ok = cb(0, ctx);
if (!ok)
goto end;
} else {
/*
* We have a match: replace certificate with store
* version so we get any trust settings.
*/
X509_free(x);
x = xtmp;
(void)sk_X509_set(ctx->chain, i - 1, x);
ctx->last_untrusted = 0;
}
} else {
/*
* extract and save self signed certificate for later use
*/
chain_ss = sk_X509_pop(ctx->chain);
ctx->last_untrusted--;
num--;
j--;
x = sk_X509_value(ctx->chain, num - 1);
}
}
/* We now lookup certs from the certificate store */
for (;;) {
/* If we have enough, we break */
if (depth < num)
break;
/* If we are self signed, we break */
if (cert_self_signed(x))
break;
ok = ctx->get_issuer(&xtmp, ctx, x);
if (ok < 0)
goto end;
if (ok == 0)
break;
x = xtmp;
if (!sk_X509_push(ctx->chain, x)) {
X509_free(xtmp);
X509err(X509_F_X509_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
ok = 0;
goto done;
}
num++;
}
/* we now have our chain, lets check it... */
i = check_trust(ctx);
/* If explicitly rejected error */
if (i == X509_TRUST_REJECTED)
goto end;
/*
* If it's not explicitly trusted then check if there is an alternative
* chain that could be used. We only do this if we haven't already
* checked via TRUSTED_FIRST and the user hasn't switched off alternate
* chain checking
*/
retry = 0;
if (i != X509_TRUST_TRUSTED
&& !(ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST)
&& !(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS)) {
while (j-- > 1) {
STACK_OF(X509) *chtmp = ctx->chain;
xtmp2 = sk_X509_value(ctx->chain, j - 1);
/*
* Temporarily set chain to NULL so we don't discount
* duplicates: the same certificate could be an untrusted
* CA found in the trusted store.
*/
ctx->chain = NULL;
ok = ctx->get_issuer(&xtmp, ctx, xtmp2);
ctx->chain = chtmp;
if (ok < 0)
goto end;
/* Check if we found an alternate chain */
if (ok > 0) {
/*
* Free up the found cert we'll add it again later
*/
X509_free(xtmp);
/*
* Dump all the certs above this point - we've found an
* alternate chain
*/
while (num > j) {
xtmp = sk_X509_pop(ctx->chain);
X509_free(xtmp);
num--;
}
ctx->last_untrusted = sk_X509_num(ctx->chain);
retry = 1;
break;
}
}
}
} while (retry);
/*
* If not explicitly trusted then indicate error unless it's a single
* self signed certificate in which case we've indicated an error already
* and set bad_chain == 1
*/
if (i != X509_TRUST_TRUSTED && !bad_chain) {
if ((chain_ss == NULL) || !ctx->check_issued(ctx, x, chain_ss)) {
if (ctx->last_untrusted >= num)
ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY;
else
ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT;
ctx->current_cert = x;
} else {
sk_X509_push(ctx->chain, chain_ss);
num++;
ctx->last_untrusted = num;
ctx->current_cert = chain_ss;
ctx->error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN;
chain_ss = NULL;
}
ctx->error_depth = num - 1;
bad_chain = 1;
ok = cb(0, ctx);
if (!ok)
goto end;
}
/* We have the chain complete: now we need to check its purpose */
ok = check_chain_extensions(ctx);
if (!ok)
goto end;
/* Check name constraints */
ok = check_name_constraints(ctx);
if (!ok)
goto end;
ok = check_id(ctx);
if (!ok)
goto end;
/* We may as well copy down any DSA parameters that are required */
X509_get_pubkey_parameters(NULL, ctx->chain);
/*
* Check revocation status: we do this after copying parameters because
* they may be needed for CRL signature verification.
*/
ok = ctx->check_revocation(ctx);
if (!ok)
goto end;
i = X509_chain_check_suiteb(&ctx->error_depth, NULL, ctx->chain,
ctx->param->flags);
if (i != X509_V_OK) {
ctx->error = i;
ctx->current_cert = sk_X509_value(ctx->chain, ctx->error_depth);
ok = cb(0, ctx);
if (!ok)
goto end;
}
/* At this point, we have a chain and need to verify it */
if (ctx->verify != NULL)
ok = ctx->verify(ctx);
else
ok = internal_verify(ctx);
if (!ok)
goto end;
#ifndef OPENSSL_NO_RFC3779
/* RFC 3779 path validation, now that CRL check has been done */
ok = v3_asid_validate_path(ctx);
if (!ok)
goto end;
ok = v3_addr_validate_path(ctx);
if (!ok)
goto end;
#endif
/* If we get this far evaluate policies */
if (!bad_chain && (ctx->param->flags & X509_V_FLAG_POLICY_CHECK))
ok = ctx->check_policy(ctx);
if (ok)
goto done;
end:
X509_get_pubkey_parameters(NULL, ctx->chain);
done:
sk_X509_free(sktmp);
X509_free(chain_ss);
return ok;
} }
/* /*
@ -618,7 +375,7 @@ static int check_chain_extensions(X509_STORE_CTX *ctx)
} }
/* Check all untrusted certificates */ /* Check all untrusted certificates */
for (i = 0; i < ctx->last_untrusted; i++) { for (i = 0; i == 0 || i < ctx->num_untrusted; i++) {
int ret; int ret;
x = sk_X509_value(ctx->chain, i); x = sk_X509_value(ctx->chain, i);
if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL) if (!(ctx->param->flags & X509_V_FLAG_IGNORE_CRITICAL)
@ -801,48 +558,66 @@ static int check_id(X509_STORE_CTX *ctx)
return 1; return 1;
} }
static int check_trust(X509_STORE_CTX *ctx) static int check_trust(X509_STORE_CTX *ctx, int num_untrusted)
{ {
int i, ok; int i, ok = 0;
X509 *x = NULL; X509 *x = NULL;
int (*cb) (int xok, X509_STORE_CTX *xctx); X509 *mx;
cb = ctx->verify_cb; int (*cb) (int xok, X509_STORE_CTX *xctx) = ctx->verify_cb;
/* Check all trusted certificates in chain */ int num = sk_X509_num(ctx->chain);
for (i = ctx->last_untrusted; i < sk_X509_num(ctx->chain); i++) { int trust;
x = sk_X509_value(ctx->chain, i);
ok = X509_check_trust(x, ctx->param->trust, 0);
/* If explicitly trusted return trusted */
if (ok == X509_TRUST_TRUSTED)
return X509_TRUST_TRUSTED;
/*
* If explicitly rejected notify callback and reject if not
* overridden.
*/
if (ok == X509_TRUST_REJECTED) {
ctx->error_depth = i;
ctx->current_cert = x;
ctx->error = X509_V_ERR_CERT_REJECTED;
ok = cb(0, ctx);
if (!ok)
return X509_TRUST_REJECTED;
}
}
/* /*
* If we accept partial chains and have at least one trusted certificate * Check trusted certificates in chain at depth num_untrusted and up.
* return success. * Note, that depths 0..num_untrusted-1 may also contain trusted
* certificates, but the caller is expected to have already checked those,
* and wants to incrementally check just any added since.
*/ */
for (i = num_untrusted; i < num; i++) {
x = sk_X509_value(ctx->chain, i);
trust = X509_check_trust(x, ctx->param->trust, 0);
/* If explicitly trusted return trusted */
if (trust == X509_TRUST_TRUSTED)
goto trusted;
if (trust == X509_TRUST_REJECTED)
goto rejected;
}
/*
* If we are looking at a trusted certificate, and accept partial chains,
* the chain is PKIX trusted.
*/
if (num_untrusted < num) {
if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN)
goto trusted;
return X509_TRUST_UNTRUSTED;
}
if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) { if (ctx->param->flags & X509_V_FLAG_PARTIAL_CHAIN) {
X509 *mx; /*
if (ctx->last_untrusted < sk_X509_num(ctx->chain)) * Last-resort call with no new trusted certificates, check the leaf
return X509_TRUST_TRUSTED; * for a direct trust store match.
*/
x = sk_X509_value(ctx->chain, 0); x = sk_X509_value(ctx->chain, 0);
mx = lookup_cert_match(ctx, x); mx = lookup_cert_match(ctx, x);
if (mx) { if (!mx)
(void)sk_X509_set(ctx->chain, 0, mx); return X509_TRUST_UNTRUSTED;
X509_free(x);
ctx->last_untrusted = 0; /*
return X509_TRUST_TRUSTED; * Check explicit auxiliary trust/reject settings. If none are set,
* we'll accept X509_TRUST_UNTRUSTED when not self-signed.
*/
trust = X509_check_trust(mx, ctx->param->trust, 0);
if (trust == X509_TRUST_REJECTED) {
X509_free(mx);
goto rejected;
} }
/* Replace leaf with trusted match */
(void) sk_X509_set(ctx->chain, 0, mx);
X509_free(x);
ctx->num_untrusted = 0;
goto trusted;
} }
/* /*
@ -850,6 +625,18 @@ static int check_trust(X509_STORE_CTX *ctx)
* standard (no issuer cert) etc errors to be indicated. * standard (no issuer cert) etc errors to be indicated.
*/ */
return X509_TRUST_UNTRUSTED; return X509_TRUST_UNTRUSTED;
rejected:
ctx->error_depth = i;
ctx->current_cert = x;
ctx->error = X509_V_ERR_CERT_REJECTED;
ok = cb(0, ctx);
if (!ok)
return X509_TRUST_REJECTED;
return X509_TRUST_UNTRUSTED;
trusted:
return X509_TRUST_TRUSTED;
} }
static int check_revocation(X509_STORE_CTX *ctx) static int check_revocation(X509_STORE_CTX *ctx)
@ -1732,9 +1519,8 @@ static int internal_verify(X509_STORE_CTX *ctx)
cb = ctx->verify_cb; cb = ctx->verify_cb;
n = sk_X509_num(ctx->chain); n = sk_X509_num(ctx->chain) - 1;
ctx->error_depth = n - 1; ctx->error_depth = n;
n--;
xi = sk_X509_value(ctx->chain, n); xi = sk_X509_value(ctx->chain, n);
if (ctx->check_issued(ctx, xi, xi)) if (ctx->check_issued(ctx, xi, xi))
@ -1756,7 +1542,10 @@ static int internal_verify(X509_STORE_CTX *ctx)
} }
} }
/* ctx->error=0; not needed */ /*
* Do not clear ctx->error=0, it must be "sticky", only the user's callback
* is allowed to reset errors (at its own peril).
*/
while (n >= 0) { while (n >= 0) {
ctx->error_depth = n; ctx->error_depth = n;
@ -2269,7 +2058,7 @@ int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
ctx->cert = x509; ctx->cert = x509;
ctx->untrusted = chain; ctx->untrusted = chain;
ctx->crls = NULL; ctx->crls = NULL;
ctx->last_untrusted = 0; ctx->num_untrusted = 0;
ctx->other_ctx = NULL; ctx->other_ctx = NULL;
ctx->valid = 0; ctx->valid = 0;
ctx->chain = NULL; ctx->chain = NULL;
@ -2380,7 +2169,7 @@ int X509_STORE_CTX_init(X509_STORE_CTX *ctx, X509_STORE *store, X509 *x509,
} }
return 1; return 1;
err: err:
X509_STORE_CTX_cleanup(ctx); X509_STORE_CTX_cleanup(ctx);
return 0; return 0;
} }
@ -2447,7 +2236,7 @@ int X509_STORE_CTX_get_explicit_policy(X509_STORE_CTX *ctx)
int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx) int X509_STORE_CTX_get_num_untrusted(X509_STORE_CTX *ctx)
{ {
return ctx->last_untrusted; return ctx->num_untrusted;
} }
int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name) int X509_STORE_CTX_set_default(X509_STORE_CTX *ctx, const char *name)
@ -2469,3 +2258,267 @@ void X509_STORE_CTX_set0_param(X509_STORE_CTX *ctx, X509_VERIFY_PARAM *param)
X509_VERIFY_PARAM_free(ctx->param); X509_VERIFY_PARAM_free(ctx->param);
ctx->param = param; ctx->param = param;
} }
static int build_chain(X509_STORE_CTX *ctx)
{
int (*cb) (int, X509_STORE_CTX *) = ctx->verify_cb;
int num = sk_X509_num(ctx->chain);
X509 *cert = sk_X509_value(ctx->chain, num - 1);
int ss = cert_self_signed(cert);
STACK_OF(X509) *sktmp = NULL;
unsigned int search;
int may_trusted = 1;
int may_alternate = 0;
int trust = X509_TRUST_UNTRUSTED;
int alt_untrusted = 0;
int depth;
int ok = 0;
int i;
/* Our chain starts with a single untrusted element. */
OPENSSL_assert(num == 1 && ctx->num_untrusted == num);
#define S_DOUNTRUSTED (1 << 0) /* Search untrusted chain */
#define S_DOTRUSTED (1 << 1) /* Search trusted store */
#define S_DOALTERNATE (1 << 2) /* Retry with pruned alternate chain */
/*
* Set up search policy, untrusted if possible, trusted-first if enabled.
* If not trusted-first, and alternate chains are not disabled, try
* building an alternate chain if no luck with untrusted first.
*/
search = (ctx->untrusted != NULL) ? S_DOUNTRUSTED : 0;
if (search == 0 || ctx->param->flags & X509_V_FLAG_TRUSTED_FIRST)
search |= S_DOTRUSTED;
else if (!(ctx->param->flags & X509_V_FLAG_NO_ALT_CHAINS))
may_alternate = 1;
/*
* Shallow-copy the stack of untrusted certificates (with TLS, this is
* typically the content of the peer's certificate message) so can make
* multiple passes over it, while free to remove elements as we go.
*/
if (ctx->untrusted && (sktmp = sk_X509_dup(ctx->untrusted)) == NULL) {
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
return 0;
}
/*
* Still absurdly large, but arithmetically safe, a lower hard upper bound
* might be reasonable.
*/
if (ctx->param->depth > INT_MAX/2)
ctx->param->depth = INT_MAX/2;
/*
* Try to Extend the chain until we reach an ultimately trusted issuer.
* Build chains up to one longer the limit, later fail if we hit the limit,
* with an X509_V_ERR_CERT_CHAIN_TOO_LONG error code.
*/
depth = ctx->param->depth + 1;
while (search != 0) {
X509 *x;
X509 *xtmp = NULL;
/*
* Look in the trust store if enabled for first lookup, or we've run
* out of untrusted issuers and search here is not disabled. When
* we exceed the depth limit, we simulate absence of a match.
*/
if ((search & S_DOTRUSTED) != 0) {
STACK_OF(X509) *hide = ctx->chain;
i = num = sk_X509_num(ctx->chain);
if ((search & S_DOALTERNATE) != 0) {
/*
* As high up the chain as we can, look for an alternative
* trusted issuer of an untrusted certificate that currently
* has an untrusted issuer. We use the alt_untrusted variable
* to track how far up the chain we find the first match. It
* is only if and when we find a match, that we prune the chain
* and reset ctx->num_untrusted to the reduced count of
* untrusted certificates. While we're searching for such a
* match (which may never be found), it is neither safe nor
* wise to preemptively modify either the chain or
* ctx->num_untrusted.
*
* Note, like ctx->num_untrusted, alt_untrusted is a count of
* untrusted certificates, not a "depth".
*/
i = alt_untrusted;
}
x = sk_X509_value(ctx->chain, i-1);
/* Suppress duplicate suppression */
ctx->chain = NULL;
ok = (depth < num) ? 0 : ctx->get_issuer(&xtmp, ctx, x);
ctx->chain = hide;
if (ok < 0) {
trust = X509_TRUST_REJECTED;
search = 0;
continue;
}
if (ok > 0) {
/*
* Alternative trusted issuer for a mid-chain untrusted cert?
* Pop the untrusted cert's successors and retry. We might now
* be able to complete a valid chain via the trust store. Note
* that despite the current trust-store match we might still
* fail complete the chain to a suitable trust-anchor, in which
* case we may prune some more untrusted certificates and try
* again. Thus the S_DOALTERNATE bit may yet be turned on
* again with an even shorter untrusted chain!
*/
if ((search & S_DOALTERNATE) != 0) {
OPENSSL_assert(num > i && i > 0 && ss == 0);
search &= ~S_DOALTERNATE;
for (; num > i; --num)
X509_free(sk_X509_pop(ctx->chain));
ctx->num_untrusted = num;
}
/*
* Self-signed untrusted certificates get replaced by their
* trusted matching issuer. Otherwise, grow the chain.
*/
if (ss == 0) {
if (!sk_X509_push(ctx->chain, x = xtmp)) {
X509_free(xtmp);
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
trust = X509_TRUST_REJECTED;
search = 0;
continue;
}
ss = cert_self_signed(x);
} else if (num == ctx->num_untrusted) {
/*
* We have a self-signed certificate that has the same
* subject name (and perhaps keyid and/or serial number) as
* a trust-anchor. We must have an exact match to avoid
* possible impersonation via key substitution etc.
*/
if (X509_cmp(x, xtmp) != 0) {
/* Self-signed untrusted mimic. */
X509_free(xtmp);
ok = 0;
} else {
X509_free(x);
ctx->num_untrusted = --num;
(void) sk_X509_set(ctx->chain, num, x = xtmp);
}
}
/*
* We've added a new trusted certificate to the chain, recheck
* trust. If not done, and not self-signed look deeper.
* Whether or not we're doing "trusted first", we no longer
* look for untrusted certificates from the peer's chain.
*/
if (ok) {
OPENSSL_assert(ctx->num_untrusted <= num);
search &= ~S_DOUNTRUSTED;
switch (trust = check_trust(ctx, num)) {
case X509_TRUST_TRUSTED:
case X509_TRUST_REJECTED:
search = 0;
continue;
}
if (ss == 0)
continue;
}
}
/*
* No dispositive decision, and either self-signed or no match, if
* we were doing untrusted-first, and alt-chains are not disabled,
* do that, by repeatedly losing one untrusted element at a time,
* and trying to extend the shorted chain.
*/
if ((search & S_DOUNTRUSTED) == 0) {
/* Continue search for a trusted issuer of a shorter chain? */
if ((search & S_DOALTERNATE) != 0 && --alt_untrusted > 0)
continue;
/* Still no luck and no fallbacks left? */
if (!may_alternate || (search & S_DOALTERNATE) != 0 ||
ctx->num_untrusted < 2)
break;
/* Search for a trusted issuer of a shorter chain */
search |= S_DOALTERNATE;
alt_untrusted = ctx->num_untrusted - 1;
ss = 0;
}
}
/*
* Extend chain with peer-provided certificates
*/
if ((search & S_DOUNTRUSTED) != 0) {
num = sk_X509_num(ctx->chain);
OPENSSL_assert(num == ctx->num_untrusted);
x = sk_X509_value(ctx->chain, num-1);
xtmp = (depth < num) ? NULL : find_issuer(ctx, sktmp, x);
/*
* Once we run out of untrusted issuers, we stop looking for more
* and start looking only in the trust store if enabled.
*/
if (xtmp == NULL) {
search &= ~S_DOUNTRUSTED;
if (may_trusted)
search |= S_DOTRUSTED;
continue;
}
if (!sk_X509_push(ctx->chain, x = xtmp)) {
X509err(X509_F_BUILD_CHAIN, ERR_R_MALLOC_FAILURE);
trust = X509_TRUST_REJECTED;
search = 0;
continue;
}
X509_up_ref(x);
++ctx->num_untrusted;
ss = cert_self_signed(xtmp);
/*
* Not strictly necessary, but saves cycles looking at the same
* certificates over and over.
*/
(void) sk_X509_delete_ptr(sktmp, x);
}
}
sk_X509_free(sktmp);
/*
* Last chance to make a trusted chain, check for direct leaf PKIX trust.
*/
if (sk_X509_num(ctx->chain) <= depth) {
if (trust == X509_TRUST_UNTRUSTED &&
sk_X509_num(ctx->chain) == ctx->num_untrusted)
trust = check_trust(ctx, 1);
}
switch (trust) {
case X509_TRUST_TRUSTED:
return 1;
case X509_TRUST_REJECTED:
return 0;
case X509_TRUST_UNTRUSTED:
default:
num = sk_X509_num(ctx->chain);
ctx->current_cert = sk_X509_value(ctx->chain, num - 1);
ctx->error_depth = num-1;
if (num > depth)
ctx->error = X509_V_ERR_CERT_CHAIN_TOO_LONG;
else if (ss && sk_X509_num(ctx->chain) == 1)
ctx->error = X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT;
else if (ss)
ctx->error = X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN;
else if (ctx->num_untrusted == num)
ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY;
else
ctx->error = X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT;
return cb(0, ctx);
}
}

View file

@ -1070,6 +1070,7 @@ void ERR_load_X509_strings(void);
/* Function codes. */ /* Function codes. */
# define X509_F_ADD_CERT_DIR 100 # define X509_F_ADD_CERT_DIR 100
# define X509_F_BUILD_CHAIN 106
# define X509_F_BY_FILE_CTRL 101 # define X509_F_BY_FILE_CTRL 101
# define X509_F_CHECK_POLICY 145 # define X509_F_CHECK_POLICY 145
# define X509_F_DIR_CTRL 102 # define X509_F_DIR_CTRL 102

View file

@ -240,8 +240,8 @@ struct x509_store_ctx_st { /* X509_STORE_CTX */
/* The following is built up */ /* The following is built up */
/* if 0, rebuild chain */ /* if 0, rebuild chain */
int valid; int valid;
/* index of last untrusted cert */ /* number of untrusted certs */
int last_untrusted; int num_untrusted;
/* chain of X509s - built up and trusted */ /* chain of X509s - built up and trusted */
STACK_OF(X509) *chain; STACK_OF(X509) *chain;
/* Valid policy tree */ /* Valid policy tree */